Collisions between lump and soliton solutions

Abstract This paper investigates a multi-component plasmas model described by the (3 + 1)-dimensional extend Kadomtsev–Petviashvili equation (eKPe). Lump and soliton solutions are obtained via the Hirota’s bilinear form. Collisions between lump solutions and one solitary wave are studied. Furthermore, collisions between lump solutions and two solitary waves are discussed. The dynamical behaviors of the derived solutions are shown via 3D- and contour plots.

[1]  L. Zou,et al.  Lump solutions with interaction phenomena in the (2+1)-dimensional Ito equation , 2018 .

[2]  Shou‐Fu Tian,et al.  On quasi-periodic waves and rogue waves to the (4+1)-dimensional nonlinear Fokas equation , 2018, Journal of Mathematical Physics.

[3]  Hadi Rezazadeh,et al.  New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity , 2018, Optik.

[4]  Shou-Fu Tian,et al.  Bäcklund transformation, rogue wave solutions and interaction phenomena for a $$\varvec{(3+1)}$$(3+1)-dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation , 2018 .

[5]  A. Wazwaz Painlevé analysis for a new integrable equation combining the modified Calogero–Bogoyavlenskii–Schiff (MCBS) equation with its negative-order form , 2018 .

[6]  Wen-Xiu Ma,et al.  Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation , 2018, Comput. Math. Appl..

[7]  Yi-Tian Gao,et al.  Solitons for a (2+1)-dimensional Sawada-Kotera equation via the Wronskian technique , 2017, Appl. Math. Lett..

[8]  Bo Tian,et al.  Breather wave, rogue wave and lump wave solutions for a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in fluid , 2018, Modern Physics Letters B.

[9]  Wen-Xiu Ma,et al.  Diversity of interaction solutions to the (2+1)-dimensional Ito equation , 2017, Comput. Math. Appl..

[10]  Wen-Xiu Ma,et al.  Riemann–Hilbert problems andN-soliton solutions for a coupled mKdV system , 2018, Journal of Geometry and Physics.

[11]  Mostafa Eslami,et al.  Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations , 2016, Appl. Math. Comput..

[12]  Wen-Xiu Ma,et al.  Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs , 2018, Journal of Geometry and Physics.

[13]  M. Eslami Trial solution technique to chiral nonlinear Schrodinger’s equation in (1$$+$$+2)-dimensions , 2016 .

[14]  M. Belić,et al.  Optical solitons in nonlinear directional couplers by sine–cosine function method and Bernoulli’s equation approach , 2015 .

[15]  Xianwei Zhou,et al.  Resonant multiple wave solutions to a new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation: Linear superposition principle , 2018, Appl. Math. Lett..

[16]  Wen-Xiu Ma,et al.  Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation , 2017, Nonlinear Dynamics.

[17]  K. U. Tariq,et al.  Optical solitons with quadratic–cubic nonlinearity and fractional temporal evolution , 2018, Modern Physics Letters B.

[18]  Abdul-Majid Wazwaz,et al.  An efficient algorithm to construct multi-soliton rational solutions of the (2+ 1)-dimensional KdV equation with variable coefficients , 2018, Appl. Math. Comput..

[19]  Zhong-Zhou Lan,et al.  Multi-soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schrödinger equation , 2018, Appl. Math. Lett..

[20]  Hengchun Hu,et al.  Mixed lump-soliton solutions of the (3+1)-dimensional soliton equation , 2018, Appl. Math. Lett..

[21]  Li Zou,et al.  Dynamics of the breather waves, rogue waves and solitary waves in an extend Kadomtsev-Petviashvili equation , 2018, Appl. Math. Lett..