Enhanced whole genome sequence and annotation of Clostridium stercorarium DSM8532T using RNA-seq transcriptomics and high-throughput proteomics

[1]  B. Henrissat,et al.  Enhanced whole genome sequence and annotation of Clostridium stercorarium DSM8532T using RNA-seq transcriptomics and high-throughput proteomics , 2014, BMC Genomics.

[2]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[3]  R. Sparling,et al.  Thermoanaerobacter thermohydrosulfuricus WC1 Shows Protein Complement Stability during Fermentation of Key Lignocellulose-Derived Substrates , 2013, Applied and Environmental Microbiology.

[4]  Trevor R. Zuroff,et al.  Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture , 2013, Biotechnology for Biofuels.

[5]  B. Henrissat,et al.  Genomic Evaluation of Thermoanaerobacter spp. for the Construction of Designer Co-Cultures to Improve Lignocellulosic Biofuel Production , 2013, PloS one.

[6]  V. Zverlov,et al.  Complete Genome Sequence of Clostridium stercorarium subsp. stercorarium Strain DSM 8532, a Thermophilic Degrader of Plant Cell Wall Fibers , 2013, Genome Announcements.

[7]  B. Haas,et al.  How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? , 2012, BMC Genomics.

[8]  Xuan Li,et al.  Optimizing hybrid assembly of next-generation sequence data from Enterococcus faecium: a microbe with highly divergent genome , 2012, BMC Systems Biology.

[9]  Richard Sparling,et al.  Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2and ethanol-producing bacteria , 2012, BMC Microbiology.

[10]  Peyman Ezzati,et al.  Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression , 2012, BMC Microbiology.

[11]  Sang Yup Lee,et al.  Comparative multi-omics systems analysis of Escherichia coli strains B and K-12 , 2012, Genome Biology.

[12]  Joshua N. Adkins,et al.  Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae , 2012, PloS one.

[13]  D. Jordan,et al.  Plant cell walls to ethanol. , 2012, The Biochemical journal.

[14]  J. Liao,et al.  Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations , 2012, Biotechnology for Biofuels.

[15]  Shihui Yang,et al.  Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress , 2012, BMC Genomics.

[16]  Elena S. Peterson,et al.  VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data , 2012, BMC Genomics.

[17]  U. Tschirner,et al.  Improved ethanol production from various carbohydrates through anaerobic thermophilic co-culture. , 2011, Bioresource technology.

[18]  Adam P. Arkin,et al.  Evidence-Based Annotation of Gene Function in Shewanella oneidensis MR-1 Using Genome-Wide Fitness Profiling across 121 Conditions , 2011, PLoS genetics.

[19]  Helong Jiang,et al.  Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. , 2011, Bioresource technology.

[20]  Richard Sparling,et al.  End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405 , 2011, Applied Microbiology and Biotechnology.

[21]  M. Gelfand,et al.  Complete Genome and Proteome of Acholeplasma laidlawii , 2011, Journal of bacteriology.

[22]  Steven P Gygi,et al.  Proteome-wide systems analysis of a cellulosic biofuel-producing microbe , 2011, Molecular Systems Biology.

[23]  Weihong Jiang,et al.  Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018 , 2011, BMC Genomics.

[24]  Paul Stothard,et al.  Interactive microbial genome visualization with GView , 2010, Bioinform..

[25]  Babu Raman,et al.  Engineered microbial systems for enhanced conversion of lignocellulosic biomass. , 2010, Current opinion in biotechnology.

[26]  R. Thauer,et al.  NADP+ Reduction with Reduced Ferredoxin and NADP+ Reduction with NADH Are Coupled via an Electron-Bifurcating Enzyme Complex in Clostridium kluyveri , 2010, Journal of bacteriology.

[27]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[28]  B. Joris,et al.  The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. , 2010, Microbiology.

[29]  S. Sze,et al.  Quantitative iTRAQ secretome analysis of cellulolytic Thermobifida fusca. , 2010, Journal of proteome research.

[30]  Natalia N. Ivanova,et al.  GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes , 2010, Nature Methods.

[31]  R. Siezen,et al.  Prokaryotic whole‐transcriptome analysis: deep sequencing and tiling arrays , 2010, Microbial biotechnology.

[32]  Isabelle Queinnec,et al.  Transcriptome and Proteome Exploration to Model Translation Efficiency and Protein Stability in Lactococcus lactis , 2009, PLoS Comput. Biol..

[33]  Gwo-Liang Chen,et al.  Improved genome annotation for Zymomonas mobilis , 2009, Nature Biotechnology.

[34]  H. Mori,et al.  Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism , 2009, Molecular systems biology.

[35]  Richard Sparling,et al.  Challenges for biohydrogen production via direct lignocellulose fermentation , 2009 .

[36]  I-Min A. Chen,et al.  IMG ER: a system for microbial genome annotation expert review and curation , 2009, Bioinform..

[37]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[38]  M. Adams,et al.  The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically: a New Perspective on Anaerobic Hydrogen Production , 2009, Journal of bacteriology.

[39]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[40]  Charles Elkan,et al.  The Transporter Classification Database: recent advances , 2008, Nucleic Acids Res..

[41]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[42]  T. Bonaldi,et al.  Quantitative proteomics as a new piece of the systems biology puzzle. , 2008, Journal of proteomics.

[43]  W. Ens,et al.  Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics. , 2008, Analytical chemistry.

[44]  Jue Chen,et al.  Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems , 2008, Microbiology and Molecular Biology Reviews.

[45]  V. Zverlov,et al.  Bacterial Cellulose Hydrolysis in Anaerobic Environmental Subsystems—Clostridium thermocellumandClostridium stercorarium, Thermophilic Plant‐fiber Degraders , 2008, Annals of the New York Academy of Sciences.

[46]  Yves Quentin,et al.  ABCdb: an online resource for ABC transporter repertories from sequenced archaeal and bacterial genomes. , 2006, FEMS microbiology letters.

[47]  Lars J Jensen,et al.  Origin of replication in circular prokaryotic chromosomes. , 2006, Environmental microbiology.

[48]  Tetsuya Kimura,et al.  A Novel Thermophilic Pectate Lyase Containing Two Catalytic Modules of Clostridium stercorarium , 2005, Bioscience, biotechnology, and biochemistry.

[49]  H. Adelsberger,et al.  Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: reconstitution of the in vivo system from recombinant enzymes. , 2004, Microbiology.

[50]  K. Sakka,et al.  Crystallization and preliminary X-ray analysis of xylanase B from Clostridium stercorarium. , 2004, Acta crystallographica. Section D, Biological crystallography.

[51]  K. Sakka,et al.  Sequencing and Expression of the Gene Encoding the Clostridium stercorarium β-Xylosidase Xyl43B in Escherichia coli , 2004, Bioscience, biotechnology, and biochemistry.

[52]  W. Schwarz,et al.  Sequence analysis of the Clostridium stercorarium celZ gene encoding a thermoactive cellulase (Avicelase I): Identification of catalytic and cellulose-binding domains , 1990, Molecular and General Genetics MGG.

[53]  H. Philippe,et al.  Rampant horizontal gene transfer and phospho-donor change in the evolution of the phosphofructokinase. , 2003, Gene.

[54]  R. Beavis,et al.  A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. , 2003, Analytical chemistry.

[55]  K. Sakka,et al.  Cloning, Sequencing, and Expression of the Gene Encoding the Clostridium stercorarium α-Galactosidase Aga36A in Escherichia coli , 2003, Bioscience, biotechnology, and biochemistry.

[56]  B. Patel,et al.  Transfer of thermobacteroides leptospartum and Clostridium thermolacticum as Clostridium stercorarium subsp. leptospartum subsp. thermolacticum subsp. nov., comb. nov. and C. stercorarium subsp. thermolacticum subsp. nov., comb. nov. , 2001, International journal of systematic and evolutionary microbiology.

[57]  V. Zverlov,et al.  The thermostable α‐l‐rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial α‐l‐rhamnoside hydrolase, a new type of inverting glycoside hydrolase , 2000, Molecular microbiology.

[58]  W. Gross,et al.  Chloroplast class I and class II aldolases are bifunctional for fructose‐1,6‐biphosphate and sedoheptulose‐1,7‐biphosphate cleavage in the Calvin cycle , 1999, FEBS letters.

[59]  K. Sakka,et al.  Cloning, sequencing, and expression of the gene encoding the Clostridium stercorarium xylanase C in Escherichia coli. , 1999, Bioscience, biotechnology, and biochemistry.

[60]  V. Zverlov,et al.  Nucleotide sequence of arfB of Clostridium stercorarium, and prediction of catalytic residues of alpha-L-arabinofuranosidases based on local similarity with several families of glycosyl hydrolases. , 1998, FEMS microbiology letters.

[61]  F. Lottspeich,et al.  Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium. , 1997, European journal of biochemistry.

[62]  W. Schwarz,et al.  Structure of the Clostridium stercorarium gene celY encoding the exo-1,4-beta-glucanase Avicelase II. , 1997, Microbiology.

[63]  W. Schwarz,et al.  Molecular characterization of four strains of the cellulolytic thermophile Clostridium stercorarium , 1995 .

[64]  K. Sakka,et al.  Nucleotide sequence of the Clostridium stercorarium xynB gene encoding an extremely thermostable xylanase, and characterization of the translated product. , 1995, Bioscience, biotechnology, and biochemistry.

[65]  K. Sakka,et al.  Nucleotide Sequence of the Clostridium stercorarium xylA Gene Encoding a Bifunctional Protein with β-D-Xylosidase and α-L-Arabinofuranosidase Activities, and Properties of the Translated Product. , 1993, Bioscience, biotechnology, and biochemistry.

[66]  W. D. Murray Acetivibrio cellulosolvens Is a Synonym for Acetivibrio cellulolyticus: Emendation of the Genus Acetivibrio† , 1986 .

[67]  R. Madden Isolation and Characterization of Clostridium stercorarium sp. nov., Cellulolytic Thermophile , 1983 .

[68]  B. Patel,et al.  Transfer of Thermobacteroides leptospartum and Clostridium thermolacticum as Clostridium stercorarium subsp. leptospartum subsp. nov., comb. nov. and C. stercorarium subsp. thermolacticum subsp. nov., comb. nov , 2022 .