Greedy wavelet projections are bounded on BV

Let BV = BV(IR d ) be the space of functions of bounded variation on IR d with d ≥ 2. Let λ, � ∈ �, be a wavelet system of compactly supported functions normalized in BV, i.e. | λ| BV(IR d ) = 1, � ∈ �. Each f ∈ BV has a unique wavelet

[1]  R. DeVore,et al.  Nonlinear Approximation and the Space BV(R2) , 1999 .

[2]  Wolfgang Dahmen,et al.  Stable multiscale bases and local error estimation for elliptic problems , 1997 .

[3]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[4]  Vladimir N. Temlyakov,et al.  The best m-term approximation and greedy algorithms , 1998, Adv. Comput. Math..

[5]  R. DeVore,et al.  Interpolation of Besov-Spaces , 1988 .

[6]  R. DeVore,et al.  Multiscale decompositions on bounded domains , 2000 .

[7]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[8]  W. Ziemer Weakly differentiable functions , 1989 .

[9]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[10]  R. Strichartz Improved Sobolev inequalities , 1983 .

[11]  Przemysław Wojtaszczyk Projections and Non-Linear Approximation in the Space BV(Rd) , 2003 .

[12]  Przemysław Wojtaszczyk,et al.  Greedy Algorithm for General Biorthogonal Systems , 2000 .

[13]  Spaces of functions with bounded variation and Sobolev spaces without local unconditional structure , 2003 .

[14]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[15]  Vladimir Temlyakov,et al.  Greedy Approximation with Regard to Bases and General Minimal Systems , 2002 .

[16]  R. DeVore,et al.  Restricted Nonlinear Approximation , 2000 .

[17]  Ronald A. DeVore,et al.  Image compression through wavelet transform coding , 1992, IEEE Trans. Inf. Theory.

[18]  I. Daubechies,et al.  Harmonic analysis of the space BV. , 2003 .