Prediction of loblolly pine wood properties using transmittance near-infrared spectroscopy

Near-infrared (NIR) spectroscopy is a rapid nondestructive technique that has been used to characterize chemical and physical properties of a wide range of materials. In this study, transmittance NIR spectra from thin wood wafers cut from increment cores were used to develop calibration models for the estimation of α-cellulose content, av- erage fiber length, fiber coarseness, and lignin content in the laboratory. Eleven-year-old trees from two sites were sam- pled using 12-mm increment cores. Earlywood and latewood of ring 3 and ring 8 from these samples were analyzed in the laboratory using microanalytical methods for α-cellulose content, average fiber length, fiber coarseness, and lignin content. NIR calibrations and laboratory measurements based on one site were generally reliable, with coefficients of determination (R 2 ) ranging from 0.54 to 0.88 for average fiber length and α-cellulose content, respectively. Predicting ring 8 properties using ring 3 calibration equations showed potential for predicting α-cellulose content and fiber coarse- ness, with R 2 values of approximately 0.60, indicating the potential for early selection. Predicting the wood properties using the calibration equations from one site to predict another showed moderate success for α-cellulose content (R 2 = 0.64) and fiber coarseness (R 2 = 0.63), but predictions for fiber length were relatively poor (R 2 = 0.43). Prediction of lignin content using transmittance NIR spectroscopy was not as reliable in this study, partially because of low variation in lignin content in these wood samples and large errors in measuring lignin content in the laboratory. Resume : La spectroscopie dans le proche infrarouge (PIR) est une methode rapide et non destructive qui a ete utilisee pour caracteriser les proprietes chimiques et physiques d'une vaste gamme de materiaux. Dans cette etude, les spectres de transmittance PIR de minces copeaux de bois preleves sur des carottes ont ete utilises pour developper des modeles capables d'estimer le contenu en α-cellulose, la longueur moyenne des fibres, la grosseur du grain et le contenu en li- gnine mesures en laboratoire. Des arbres âges de 11 ans ont ete echantillonnes dans deux stations en prelevant des ca- rottes de 12 mm. Le bois initial et le bois final des cernes trois et huit de ces echantillons ont ete analyses en laboratoire a l'aide de techniques micro-analytiques pour determiner le contenu en α-cellulose, la longueur moyenne des fibres, la grosseur du grain et la lignine. L'etalonnage PIR avec les mesures en laboratoire basees sur les echantil- lons d'une station etait generalement fiable avec des coefficients de determination (R 2 ) variant respectivement de 0,54 a

[1]  S. McKeand,et al.  Impact of forest genetics on sustainable forestry - results from two cycles of loblolly pine breeding in the U.S. , 1999 .

[2]  Jay H. Goodman,et al.  Statistics in spectroscopy , 1991 .

[3]  C. Raymond,et al.  Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. I. Basic density , 2001, Wood Science and Technology.

[4]  Richard F. Daniels,et al.  Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy , 2006, Wood Science and Technology.

[5]  A Comparison of Reflectance and Transmittance Near-Infrared Spectroscopic Techniques in Determining Drug Content in Intact Tablets , 2001, Pharmaceutical development and technology.

[6]  Richard F. Daniels,et al.  Nondestructive estimation of Pinus taeda L. wood properties for samples from a wide range of sites in Georgia , 2005 .

[7]  L. Schimleck,et al.  Determination of within-tree variation of kraft pulp yield using near-infrared spectroscopy , 1998 .

[8]  J. Kadla,et al.  Microanalytical method for the characterization of fiber components and morphology of woody plants. , 2002, Journal of agricultural and food chemistry.

[9]  Leslie H. Groom,et al.  Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood , 2004, Wood Science and Technology.

[10]  Robert Evans,et al.  Estimation of air-dry density of increment cores by near infrared spectroscopy , 2003 .

[11]  T. Næs,et al.  Locally weighted regression and scatter correction for near-infrared reflectance data , 1990 .

[12]  J. Kadla,et al.  Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy. , 2004, Journal of agricultural and food chemistry.

[13]  G. C. Marten,et al.  Near infrared reflectance spectroscopy (NIRS): analysis of forage quality , 1989 .

[14]  Jerry Workman NIR Spectroscopy Calibration Basics , 2007 .

[15]  Laurence R. Schimleck,et al.  Development of near infrared reflectance analysis calibrations for estimating genetic parameters for cellulose content in Eucalyptus globulus , 2002 .

[16]  A. J. Michell Pulpwood quality estimation by near-infrared spectroscopic measurements on eucalypt woods , 1995 .

[17]  R. J. Kerekes,et al.  Effects of fiber length and coarseness on pulp flocculation , 1995 .

[18]  A. Duplooy The relationship between wood and pulp properties of E. grandis (Hill ex-Maiden) grown in South Africa. , 1980 .

[19]  L. Schimleck,et al.  Estimation of basic density of Eucalyptus globulus using near-infrared spectroscopy , 1999 .

[20]  L. Schimleck,et al.  Genetic parameters and genotype-by-environment interactions for pulp-yield predicted using near infrared reflectance analysis and pulp productivity in Eucalyptus globulus , 2001 .

[21]  S. McKeand,et al.  TREE IMPROVEMENT AND SUSTAINABLE FORESTRY - IMPACT OF TWO CYCLES OF LOBLOLLY PINE BREEDING IN THE U. S.A.' , 1999 .

[22]  Emil W. Ciurczak,et al.  Handbook of Near-Infrared Analysis , 1992 .

[23]  L. Schimleck,et al.  Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. III. Predicted pulp yield using Near Infrared Reflectance Analysis , 2001, Wood Science and Technology.

[24]  B. Ransil Statistics in Spectroscopy , 1992 .

[25]  Robert Evans,et al.  Estimation of Eucalyptus delegatensis wood properties by near infrared spectroscopy , 2001 .

[26]  A. Wallis,et al.  Chemical analysis of polysaccharides in plantation eucalypt woods and pulps , 1996 .

[27]  Henri Baillères,et al.  Near infrared analysis as a tool for rapid screening of some major wood characteristics in a eucalyptus breeding program , 2002 .

[28]  R. Sederoff,et al.  Metabolic profiling: a new tool in the study of wood formation. , 2004, Journal of agricultural and food chemistry.

[29]  L. Schimleck,et al.  NIR spectroscopy of woods from Eucalyptus globulus , 1996 .

[30]  Laurence R. Schimleck,et al.  Genetic improvement of kraft pulp yield in Eucalyptus nitens using cellulose content determined by near infrared spectroscopy , 2004 .

[31]  C. Miller Analysis of synthetic polymers by near-infrared spectroscopy , 1989 .

[32]  Robert Evans,et al.  ESTIMATION OF WOOD STIFFNESS OF INCREMENT CORES BY NEAR INFRARED SPECTROSCOPY: THE DEVELOPMENT AND APPLICATION OF CALIBRATIONS BASED ON SELECTED CORES , 2002 .

[33]  A. Wallis,et al.  Analytical characteristics of plantation eucalypt woods relating to kraft pulp yields , 1996 .

[34]  J. A. Wright,et al.  Prediction of pulp yield and cellulose content from wood samples using near infrared reflectance spectroscopy , 1990 .

[35]  C. Raymond,et al.  Prediction of whole-tree basic density and pulp yield using wood core samples in Eucalyptus nitens , 2002 .

[36]  Richard F. Daniels,et al.  Estimation of the physical wood properties of green Pinus taeda radial samples by near infrared spectroscopy , 2003 .