Feedback control of optical beam spatial profiles using thermal lensing.

A method for active control of the spatial profile of a laser beam using adaptive thermal lensing is described. A segmented electrical heater was used to generate thermal gradients across a transmissive optical element, resulting in a controllable thermal lens. The segmented heater also allows the generation of cylindrical lenses, and provides the capability to steer the beam in both horizontal and vertical planes. Using this device as an actuator, a feedback control loop was developed to stabilize the beam size and position.

[1]  Thomas Graf,et al.  Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers , 2012, LASE.

[2]  D. Kracht,et al.  Injection-locked single-frequency laser with an output power of 220 W , 2011 .

[3]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[4]  W. Korth,et al.  Adaptive control of modal properties of optical beams using photothermal effects. , 2010, Optics express.

[5]  Craig S. Long,et al.  A piezoelectric deformable mirror for intra-cavity laser adaptive optics , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[6]  Rachel J. Cruz,et al.  Adaptive beam shaping by controlled thermal lensing in optical elements. , 2007, Applied optics.

[7]  Lei Wang,et al.  Investigation of solid-state lasers aberration compensation using an intra-cavity adaptive optic mirror , 2007, International Congress on High-Speed Imaging and Photonics.

[8]  Jens Schwarz,et al.  Development of a variable focal length concave mirror for on-shot thermal lens correction in rod amplifiers. , 2006, Optics express.

[9]  P. Fritschel,et al.  Active correction of thermal lensing through external radiative thermal actuation. , 2004, Optics letters.

[10]  T. Graf,et al.  Thermo-optically driven adaptive mirror for laser applications , 2004 .

[11]  Thu-Lan Kelly,et al.  Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses , 2000 .

[12]  D B Tanner,et al.  Determination and optimization of mode matching into optical cavities by heterodyne detection. , 2000, Optics letters.

[13]  R. Schmiedl Adaptive Optics for CO 2 Laser Material Processing , 1999 .

[14]  B. J. Meers,et al.  Automatic alignment of optical interferometers. , 1994, Applied optics.

[15]  Patrice Hello,et al.  Analytical models of transient thermoelastic deformations of mirrors heated by high power cw laser beams , 1990 .

[16]  C. Greninger Thermally induced wave-front distortions in laser windows. , 1986, Applied optics.

[17]  Susumu Sato Liquid-Crystal Lens-Cells with Variable Focal Length , 1979 .

[18]  S. H. Lee,et al.  A coherent optical feedback system for optical information processing , 1975 .

[19]  J. Foster,et al.  Thermal Effects in a Nd:YAG Laser , 1970 .