Understanding Parameter Invariance in Unidimensional IRT Models

One theoretical feature that makes item response theory (IRT) models those of choice for many psychometric data analysts is parameter invariance, the equality of item and examinee parameters from different examinee populations or measurement conditions. In this article, using the well-known fact that item and examinee parameters are identical only up to a set of linear transformations specific to the functional form of a given IRT model, violations of these transformations for unidimensional IRT models are investigated using analytical, numerical, and visual tools. Because item parameter drift (IPD) constitutes a lack of invariance (LOI) at the individual item level or item set level, the magnitudes and effects of IPD on examinee response probabilities and true scores are algebraically derived and connected to empirical results from a recent simulation study. Thus, this article facilitates a deeper understanding of the exact statistical formulation of parameter invariance as a fundamental property of latent variable measurement and explicates some practical consequences of LOI for decision making.

[1]  M. J. Subkoviak,et al.  The Effect of Item Parameter Drift on Examinee Ability Estimates , 2002 .

[2]  R. Lissitz,et al.  An Evaluation of the Accuracy of Multidimensional IRT Linking , 2000 .

[3]  Brian E. Clauser,et al.  Using Statistical Procedures to Identify Differentially Functioning Test Items , 2005 .

[4]  The Effect of Error in Item Parameter Estimates on the Test Response Function Method of Linking , 2001 .

[5]  Harvey Goldstein,et al.  Measuring Changes in Educational Attainment over Time: Problems and Possibilities. , 1983 .

[6]  William Meredith,et al.  The role of factorial invariance in modeling growth and change. , 2001 .

[7]  Steven P. Isham,et al.  A Comparison of Procedures to Detect Item Parameter Drift , 1998 .

[8]  P. Fayers Item Response Theory for Psychologists , 2004, Quality of Life Research.

[9]  B. Zumbo Does item-level DIF manifest itself in scale-level analyses? Implications for translating language tests , 2003 .

[10]  B. Junker Some statistical models and computational methods that may be useful for cognitively-relevant assessment , 1999 .

[11]  R. J. Mokken,et al.  Handbook of modern item response theory , 1997 .

[12]  R. Darrell Bock,et al.  Item Pool Maintenance in the Presence of Item Parameter Drift. , 1988 .

[13]  Stan Lipovetsky,et al.  Generalized Latent Variable Modeling: Multilevel,Longitudinal, and Structural Equation Models , 2005, Technometrics.

[14]  André A. Rupp,et al.  Quantifying Subpopulation Differences for a Lack of Invariance Using Complex Examinee Profiles: An Exploratory Multigroup Approach Using Functional Data Analysis , 2005 .

[15]  Howard Wainer,et al.  The Rasch Model as Additive Conjoint Measurement , 1979 .

[16]  A. Rupp,et al.  Which Model is Best? Robustness Properties to Justify Model Choice Among Unidimensional IRT Models under Item Parameter Drift , 2003 .

[17]  R. Linn Educational measurement, 3rd ed. , 1989 .

[18]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[19]  R. Hambleton Principles and selected applications of item response theory. , 1989 .

[20]  W. Meredith Measurement invariance, factor analysis and factorial invariance , 1993 .

[21]  R. Hambleton,et al.  An NCME Instructional Module on Comparison of Classical Test Theory and Item Response Theory and Their Applications to Test Development. , 2005 .

[22]  B. Zumbo A Handbook on the Theory and Methods of Differential Item Functioning (DIF) LOGISTIC REGRESSION MODELING AS A UNITARY FRAMEWORK FOR BINARY AND LIKERT-TYPE (ORDINAL) ITEM SCORES , 1999 .

[23]  R. Hambleton,et al.  Fundamentals of Item Response Theory , 1991 .

[24]  A. Rupp,et al.  A Note on How to Quantify and Report Whether Irt Parameter Invariance Holds: When Pearson Correlations are Not Enough , 2004 .

[25]  Linking Multidimensional Item Calibrations , 1996 .