Strong-coupling topological states and phase transitions in helical trilayer graphene

Magic-angle helical trilayer graphene relaxes into commensurate moir\'e domains, whose topological and well-isolated set of narrow bands possess ideal characteristics for realizing robust correlated topological phases, compared with other graphene-based moir\'e heterostructures. Combining strong-coupling analysis and Hartree-Fock calculations, we investigate the ground states at integer fillings $\nu$, and uncover a rich phase diagram of correlated insulators tuned by an external displacement field $D$. For small $D$, the system realizes several competing families of symmetry-broken generalized flavor ferromagnets, which exhibit various anomalous Hall signatures and Chern numbers as high as $|C|=6$. The interaction-induced dispersion renormalization is weak, so that the band flatness and the validity of strong-coupling theory are maintained at all integer fillings. For experimentally accessible displacement fields, the strong-coupling insulators at all $\nu$ undergo topological phase transitions, which appear continuous or weakly first-order. For larger $D$, we also find translation symmetry-broken phases such as Kekul\'e spiral order. Our results demonstrate the robust capability of helical trilayer graphene to host gate-tunable topological and symmetry-broken correlated phases, and lay the groundwork for future theoretical studies on other aspects such as fractional topological states.

[1]  C. Mora,et al.  Nature of even and odd magic angles in helical twisted trilayer graphene , 2023, 2308.02638.

[2]  F. Guinea,et al.  Extended magic phase in twisted graphene multilayers , 2023, 2305.18080.

[3]  G. Tarnopolsky,et al.  Magic Angle Butterfly in Twisted Trilayer Graphene , 2023, 2305.16385.

[4]  M. Koshino,et al.  Multiscale Lattice Relaxation in General Twisted Trilayer Graphenes , 2023, Physical Review X.

[5]  C. Mora,et al.  Chern mosaic and ideal flat bands in equal-twist trilayer graphene , 2023, 2305.03702.

[6]  P. Jarillo-Herrero,et al.  Magic-angle helical trilayer graphene , 2023, Science advances.

[7]  T. Taniguchi,et al.  Imaging inter-valley coherent order in magic-angle twisted trilayer graphene , 2023, 2304.10586.

[8]  G. Tarnopolsky,et al.  Magic angles in equal-twist trilayer graphene , 2023, Physical Review B.

[9]  T. Taniguchi,et al.  Quantum textures of the many-body wavefunctions in magic-angle graphene , 2023, Nature.

[10]  M. Zaletel,et al.  Kekul\'e spiral order in magic-angle graphene: a density matrix renormalization group study , 2022, 2211.02693.

[11]  Ju-Cheng Dong,et al.  Untwisting Moiré Physics: Almost Ideal Bands and Fractional Chern Insulators in Periodically Strained Monolayer Graphene , 2022, Physical Review Letters.

[12]  S. Klevtsov,et al.  Origin of model fractional Chern insulators in all topological ideal flatbands: Explicit color-entangled wave function and exact density algebra , 2022, Physical Review Research.

[13]  A. Vishwanath,et al.  Many-body ground states from decomposition of ideal higher Chern bands: Applications to chirally twisted graphene multilayers , 2022, Physical Review Research.

[14]  C. Mora,et al.  Supermoiré low-energy effective theory of twisted trilayer graphene , 2022, Physical Review B.

[15]  T. Taniguchi,et al.  Local spectroscopy of a gate-switchable moiré quantum anomalous Hall insulator , 2022, Nature communications.

[16]  N. Regnault,et al.  Phase diagram of twisted bilayer graphene at filling factor $\nu=\pm3$ , 2022, 2209.14322.

[17]  E. Bergholtz,et al.  Recent Developments in Fractional Chern Insulators , 2022, 2208.08449.

[18]  O. Vafek,et al.  Continuum effective Hamiltonian for graphene bilayers for an arbitrary smooth lattice deformation from microscopic theories , 2022, Physical Review B.

[19]  O. Vafek,et al.  Pseudomagnetic fields, particle-hole asymmetry, and microscopic effective continuum Hamiltonians of twisted bilayer graphene , 2022, Physical Review B.

[20]  B. Bernevig,et al.  Magic-Angle Twisted Bilayer Graphene as a Topological Heavy Fermion Problem. , 2022, Physical review letters.

[21]  J. Shan,et al.  Semiconductor moiré materials , 2022, Nature Nanotechnology.

[22]  Kenji Watanabe,et al.  Spin skyrmion gaps as signatures of intervalley-coherent insulators in magic-angle twisted bilayer graphene , 2022, 2206.11304.

[23]  J. Hone,et al.  Electron spin resonance and collective excitations in magic-angle twisted bilayer graphene , 2022, 2206.08354.

[24]  A. Lauchli,et al.  Non-coplanar magnetism, topological density wave order and emergent symmetry at half-integer filling of moiré Chern bands , 2022, SciPost Physics.

[25]  E. Kaxiras,et al.  Orderly disorder in magic-angle twisted trilayer graphene , 2022, Science.

[26]  Binghai Yan,et al.  Chern mosaic and Berry-curvature magnetism in magic-angle graphene , 2022, Nature Physics.

[27]  A. Yacoby,et al.  Field-tuned and zero-field fractional Chern insulators in magic angle graphene , 2021, 2112.13837.

[28]  S. Simon,et al.  Skyrmions in Twisted Bilayer Graphene: Stability, Pairing, and Crystallization , 2021, Physical Review X.

[29]  E. Kaxiras,et al.  TB or not TB? Contrasting properties of twisted bilayer graphene and the alternating twist $n$-layer structures ($n=3, 4, 5, \dots$) , 2021, 2111.11060.

[30]  Zhiyu Dong,et al.  Isospin- and momentum-polarized orders in bilayer graphene , 2021, Physical Review B.

[31]  L. Fu,et al.  Quantum Anomalous Hall Effect from Inverted Charge Transfer Gap , 2021, Physical Review X.

[32]  A. Vishwanath,et al.  Family of Ideal Chern Flatbands with Arbitrary Chern Number in Chiral Twisted Graphene Multilayers. , 2021, Physical review letters.

[33]  S. Simon,et al.  Global Phase Diagram of the Normal State of Twisted Bilayer Graphene. , 2021, Physical review letters.

[34]  Kenji Watanabe,et al.  Correlated Hofstadter spectrum and flavour phase diagram in magic-angle twisted bilayer graphene , 2021, Nature Physics.

[35]  A. Yacoby,et al.  Fractional Chern insulators in magic-angle twisted bilayer graphene , 2021, Nature.

[36]  D. Varjas,et al.  Topological lattice models with constant Berry curvature , 2021, SciPost Physics.

[37]  T. Neupert,et al.  Stability, phase transitions, and numerical breakdown of fractional Chern insulators in higher Chern bands of the Hofstadter model , 2021, Physical Review B.

[38]  O. Vafek,et al.  Lattice model for the Coulomb interacting chiral limit of magic-angle twisted bilayer graphene: Symmetries, obstructions, and excitations , 2021, Physical Review B.

[39]  A. Vishwanath,et al.  Strong coupling theory of magic-angle graphene: A pedagogical introduction , 2021, Annals of Physics.

[40]  A. Millis,et al.  Exact Landau Level Description of Geometry and Interaction in a Flatband. , 2021, Physical review letters.

[41]  S. Simon,et al.  Kekulé Spiral Order at All Nonzero Integer Fillings in Twisted Bilayer Graphene , 2021, Physical Review X.

[42]  O. Vafek,et al.  Cascades between Light and Heavy Fermions in the Normal State of Magic-Angle Twisted Bilayer Graphene. , 2021, Physical review letters.

[43]  Kenji Watanabe,et al.  Topological charge density waves at half-integer filling of a moiré superlattice , 2021, Nature Physics.

[44]  A. MacDonald,et al.  The marvels of moiré materials , 2021, Nature Reviews Materials.

[45]  Jihang Zhu,et al.  Moiré commensurability and the quantum anomalous Hall effect in twisted bilayer graphene on hexagonal boron nitride , 2020, Physical Review B.

[46]  Kenji Watanabe,et al.  Interaction-driven band flattening and correlated phases in twisted bilayer graphene , 2021, Nature Physics.

[47]  Kenji Watanabe,et al.  Correlation-driven topological phases in magic-angle twisted bilayer graphene , 2021, Nature.

[48]  Kenji Watanabe,et al.  Competing Zero-Field Chern Insulators in Superconducting Twisted Bilayer Graphene. , 2020, Physical review letters.

[49]  A. Yacoby,et al.  Unconventional sequence of correlated Chern insulators in magic-angle twisted bilayer graphene , 2021, Nature Physics.

[50]  O. Vafek,et al.  Renormalization Group Study of Hidden Symmetry in Twisted Bilayer Graphene with Coulomb Interactions. , 2020, Physical review letters.

[51]  M. Zaletel,et al.  Strain-Induced Quantum Phase Transitions in Magic-Angle Graphene. , 2020, Physical review letters.

[52]  A. Läuchli,et al.  Interplay of fractional Chern insulator and charge density wave phases in twisted bilayer graphene , 2020, 2012.09829.

[53]  T. Taniguchi,et al.  Strongly correlated Chern insulators in magic-angle twisted bilayer graphene , 2020, Nature.

[54]  F. Guinea,et al.  Heterostrain Determines Flat Bands in Magic-Angle Twisted Graphene Layers. , 2020, Physical review letters.

[55]  N. Regnault,et al.  TBG IV: Exact Insulator Ground States and Phase Diagram of Twisted Bilayer Graphene , 2020 .

[56]  N. Regnault,et al.  TBG III: Interacting Hamiltonian and Exact Symmetries of Twisted Bilayer Graphene , 2020 .

[57]  M. Zaletel,et al.  Efficient simulation of moiré materials using the density matrix renormalization group , 2020, 2009.02354.

[58]  Kenji Watanabe,et al.  Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene , 2020, Nature Physics.

[59]  S. Simon,et al.  Domain wall competition in the Chern insulating regime of twisted bilayer graphene , 2020, Physical Review B.

[60]  Kenji Watanabe,et al.  Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene , 2020, Nature Physics.

[61]  Kenji Watanabe,et al.  Strongly correlated Chern insulators in magic-angle twisted bilayer graphene , 2020, Nature.

[62]  M. Huber,et al.  Imaging orbital ferromagnetism in a moiré Chern insulator , 2020, Science.

[63]  E. Kaxiras,et al.  Twisted Trilayer Graphene: A Precisely Tunable Platform for Correlated Electrons. , 2020, Physical review letters.

[64]  V. Vitale,et al.  Hartree theory calculations of quasiparticle properties in twisted bilayer graphene , 2020, Electronic Structure.

[65]  A. Vishwanath,et al.  Charged skyrmions and topological origin of superconductivity in magic-angle graphene , 2020, Science Advances.

[66]  O. Vafek,et al.  Non-Abelian Dirac node braiding and near-degeneracy of correlated phases at odd integer filling in magic-angle twisted bilayer graphene , 2020, Physical Review B.

[67]  T. Senthil,et al.  Chern bands of twisted bilayer graphene: Fractional Chern insulators and spin phase transition , 2019, Physical Review Research.

[68]  Y. Oreg,et al.  Cascade of phase transitions and Dirac revivals in magic-angle graphene , 2019, Nature.

[69]  Kenji Watanabe,et al.  Cascade of electronic transitions in magic-angle twisted bilayer graphene , 2019, Nature.

[70]  E. Bergholtz,et al.  Particle-Hole Duality, Emergent Fermi Liquids, and Fractional Chern Insulators in Moiré Flatbands. , 2019, Physical review letters.

[71]  Kenji Watanabe,et al.  Independent superconductors and correlated insulators in twisted bilayer graphene , 2019, Nature Physics.

[72]  A. Vishwanath,et al.  Ground State and Hidden Symmetry of Magic-Angle Graphene at Even Integer Filling , 2019, 1911.02045.

[73]  M. Koshino,et al.  Effective continuum model for relaxed twisted bilayer graphene and moiré electron-phonon interaction , 2019, 1909.10786.

[74]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[75]  G. Refael,et al.  Electronic correlations in twisted bilayer graphene near the magic angle , 2019, Nature Physics.

[76]  M. Zaletel,et al.  Symmetry breaking and skyrmionic transport in twisted bilayer graphene , 2019, Physical Review B.

[77]  E. Kaxiras,et al.  Angle-Dependent {\it Ab initio} Low-Energy Hamiltonians for a Relaxed Twisted Bilayer Graphene Heterostructure , 2019, 1908.00058.

[78]  T. Taniguchi,et al.  Maximized electron interactions at the magic angle in twisted bilayer graphene , 2018, Nature.

[79]  P. Mellado,et al.  Charge smoothening and band flattening due to Hartree corrections in twisted bilayer graphene , 2019, Physical Review B.

[80]  J. Zhu,et al.  Intrinsic quantized anomalous Hall effect in a moiré heterostructure , 2019, Science.

[81]  F. Guinea,et al.  Electronic band structure and pinning of Fermi energy to Van Hove singularities in twisted bilayer graphene: A self-consistent approach , 2019, Physical Review B.

[82]  Kenji Watanabe,et al.  Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene , 2019, Nature.

[83]  Kenji Watanabe,et al.  Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene , 2019, Nature.

[84]  F. Guinea,et al.  Continuum models for twisted bilayer graphene: Effect of lattice deformation and hopping parameters , 2019, Physical Review B.

[85]  N. Yuan,et al.  Designing flat bands by strain , 2019, Physical Review B.

[86]  M. Zaletel,et al.  Mechanism for Anomalous Hall Ferromagnetism in Twisted Bilayer Graphene. , 2019, Physical review letters.

[87]  N. Regnault,et al.  Flatbands and Perfect Metal in Trilayer Moiré Graphene. , 2019, Physical review letters.

[88]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[89]  E. Kaxiras,et al.  Exact continuum model for low-energy electronic states of twisted bilayer graphene , 2019, Physical Review Research.

[90]  M. Xie,et al.  Nature of the Correlated Insulator States in Twisted Bilayer Graphene. , 2018, Physical review letters.

[91]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[92]  A. Vishwanath,et al.  Origin of Magic Angles in Twisted Bilayer Graphene. , 2018, Physical review letters.

[93]  F. Guinea,et al.  Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers , 2018, Proceedings of the National Academy of Sciences.

[94]  Yuan Cao,et al.  Nearly flat Chern bands in moiré superlattices , 2018, Physical Review B.

[95]  Steven B. Torrisi,et al.  Relaxation and domain formation in incommensurate two-dimensional heterostructures , 2018, Physical Review B.

[96]  T. Koretsune,et al.  Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene , 2018, Physical Review X.

[97]  G. T. de Laissardière,et al.  Electronic Spectrum of Twisted Graphene Layers under Heterostrain. , 2018, Physical review letters.

[98]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[99]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[100]  B. Andrews,et al.  Stability of fractional Chern insulators in the effective continuum limit of Harper-Hofstadter bands with Chern number |C|>1 , 2017, 1710.09350.

[101]  M. Koshino,et al.  Lattice relaxation and energy band modulation in twisted bilayer graphene , 2017, 1706.03908.

[102]  E. Bergholtz,et al.  Model Fractional Chern Insulators. , 2015, Physical review letters.

[103]  T. S. Jackson,et al.  Geometric stability of topological lattice phases , 2014, Nature Communications.

[104]  R. Roy,et al.  Generalizing quantum Hall ferromagnetism to fractional Chern bands , 2014, 1407.6000.

[105]  S. Kourtis,et al.  Fractional Chern insulators with strong interactions that far exceed band gaps. , 2013, Physical review letters.

[106]  E. Bergholtz,et al.  Topological Flat Band Models and Fractional Chern Insulators , 2013, 1308.0343.

[107]  J. Eisenstein Exciton Condensation in Bilayer Quantum Hall Systems , 2013, 1306.0584.

[108]  R. Roy,et al.  Fractional quantum Hall physics in topological flat bands , 2013, 1302.6606.

[109]  N. Regnault,et al.  BLOCH model wave functions and pseudopotentials for all fractional Chern insulators. , 2012, Physical review letters.

[110]  Maissam Barkeshli,et al.  Twist defects and projective non-Abelian braiding statistics , 2012, 1208.4834.

[111]  R. Roy Band geometry of fractional topological insulators , 2012, 1208.2055.

[112]  N. Regnault,et al.  Series of Abelian and non-Abelian states inC>1fractional Chern insulators , 2012, 1207.6385.

[113]  Thomas Scaffidi,et al.  Adiabatic continuation of fractional Chern insulators to fractional quantum Hall States. , 2012, Physical review letters.

[114]  H. Fan,et al.  Fractional Chern insulators in topological flat bands with higher Chern number. , 2012, Physical review letters.

[115]  S. Sarma,et al.  Topological flat band models with arbitrary Chern numbers , 2012, 1205.5792.

[116]  E. Bergholtz,et al.  Flat bands with higher Chern number in pyrochlore slabs , 2012, 1205.2245.

[117]  D. Sheng,et al.  Fractional quantum Hall effect in topological flat bands with Chern number two , 2012, 1204.1697.

[118]  X. Qi,et al.  Topological Nematic States and Non-Abelian Lattice Dislocations , 2011, 1112.3311.

[119]  B. Andrei Bernevig,et al.  Fractional Chern Insulator , 2011, 1105.4867.

[120]  L. Sheng,et al.  Fractional quantum Hall effect in the absence of Landau levels , 2011, Nature communications.

[121]  C. Chamon,et al.  Fractional quantum Hall states at zero magnetic field. , 2010, Physical review letters.

[122]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[123]  M. Goerbig,et al.  Electronic properties of graphene in a strong magnetic field , 2010, 1004.3396.

[124]  S. Girvin The Quantum Hall Effect: Novel Excitations And Broken Symmetries , 1999, cond-mat/9907002.

[125]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[126]  T. Ohira,et al.  Stability , 1973, Mathematics as a Laboratory Tool.

[127]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[128]  W. Marsden I and J , 2012 .

[129]  C. Bris,et al.  Can we outperform the DIIS approach for electronic structure calculations , 2000 .