The pagenumber of toroidal graphs is at most seven

In this paper, we show that seven pages are sufficient for a book embedding of any toroidal graph.

[1]  Arnold L. Rosenberg,et al.  Embedding graphs in books: a layout problem with applications to VLSI design , 1985 .

[2]  Mihalis Yannakakis,et al.  Four pages are necessary and sufficient for planar graphs , 1986, Symposium on the Theory of Computing.

[3]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[4]  R. Ho Algebraic Topology , 2022 .

[5]  Mihalis Yannakais,et al.  Embedding planar graphs in four pages , 1989, STOC 1989.

[6]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[7]  Mihalis Yannakakis,et al.  Embedding Planar Graphs in Four Pages , 1989, J. Comput. Syst. Sci..

[8]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[9]  Seth M. Malitz,et al.  Genus g Graphs Have Pagenumber O(sqrt(g)) , 1994, J. Algorithms.

[10]  A. White Graphs, Groups and Surfaces , 1973 .

[11]  Seth M. Malitz Genus g graphs have pagenumber O( square root g) , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[12]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .