Inverse Problem Techniques for the Design of Photonic Crystals (INVITED)

This paper provides a review on the optimal design of photonic bandgap structures by inverse problem techniques. An overview of inverse problems techniques is given, with a special focus on topology design methods. A review of first applications of inverse problems techniques to photonic bandgap structures and waveguides is given, as well as some model problems, which provide a deeper insight into the structure of the optimal design problems.

[1]  J. Pasciak,et al.  An efficient method for band structure calculations in 3D photonic crystals , 1999 .

[2]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[3]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[4]  Alexander Figotin,et al.  Midgap Defect Modes in Dielectric and Acoustic Media , 1998, SIAM J. Appl. Math..

[5]  H. Mabuchi,et al.  Inverse-problem approach to designing photonic crystals for cavity QED experiments. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  E. Yablonovitch Photonic crystals: semiconductors of light. , 2001, Scientific American.

[7]  C DobsonDavid,et al.  An Efficient Method for Band Structure Calculations in 3D Photonic Crystals , 2000 .

[8]  Dominic F. G. Gallagher,et al.  Improved waveguide structures derived from new rapid optimization techniques , 2003, SPIE OPTO.

[9]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[10]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[11]  Heinz W. Engl,et al.  On shape optimization of optical waveguides using inverse problem techniques , 2001 .

[12]  Claude Fleury,et al.  CONLIN: An efficient dual optimizer based on convex approximation concepts , 1989 .

[13]  Bernhard J. Hoenders,et al.  Photonic bandgap optimization in inverted fcc photonic crystals , 2000 .

[14]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[15]  A. Figotin,et al.  Localized classical waves created by defects , 1997 .

[16]  F. Santosa A Level-set Approach Inverse Problems Involving Obstacles , 1995 .

[17]  O. SIAMJ.,et al.  A CLASS OF GLOBALLY CONVERGENT OPTIMIZATION METHODS BASED ON CONSERVATIVE CONVEX SEPARABLE APPROXIMATIONS∗ , 2002 .

[18]  Steven J. Cox,et al.  Maximizing Band Gaps in Two-Dimensional Photonic Crystals , 1999, SIAM J. Appl. Math..

[19]  Ole Sigmund,et al.  Systematic design of phononic band–gap materials and structures by topology optimization , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  William Rundell,et al.  Surveys on solution methods for inverse problems , 2000 .

[21]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[22]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[23]  Joyce R. McLaughlin,et al.  Solving Inverse Problems with Spectral Data , 2000 .

[24]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[25]  M. Burger A framework for the construction of level set methods for shape optimization and reconstruction , 2003 .

[26]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[29]  S. Osher,et al.  Level Set Methods for Optimization Problems Involving Geometry and Constraints I. Frequencies of a T , 2001 .

[30]  A. Chambolle,et al.  Design-dependent loads in topology optimization , 2003 .

[31]  Steven J. Cox,et al.  Band Structure Optimization of Two-Dimensional Photonic Crystals in H-Polarization , 2000 .

[32]  P. Kuchment The mathematics of photonic crystals , 2001 .

[33]  D. Dobson An Efficient Method for Band Structure Calculations in 2D Photonic Crystals , 1999 .

[34]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[35]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[36]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[37]  Gang Bao,et al.  Mathematical Modeling in Optical Science , 2001, Mathematical Modeling in Optical Science.

[38]  Fadil Santosa,et al.  Optimal Localization of Eigenfunctions in an Inhomogeneous Medium , 2004, SIAM J. Appl. Math..

[39]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[40]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .