CHANGE-POINTS VIA WAVELETS FOR INDIRECT DATA

This article studies change-points of a function for noisy data observed from a transformation of the function. The proposed method uses a wavelet- vaguelette decomposition to extract information about the wavelet transformation of the function from the data and then detect and estimate change-points by the wavelet transformation. Asymptotic theory for the detection and estimation is established. A simulated example is carried out to illustrate the method.

[1]  Steven P. Neal,et al.  The Measurement and Analysis of Acoustic Noise as a Random Variable , 1990 .

[2]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[3]  Jan Mielniczuk,et al.  Nonparametric Regression Under Long-Range Dependent Normal Errors , 1995 .

[4]  I. Daubechies,et al.  Multiresolution analysis, wavelets and fast algorithms on an interval , 1993 .

[5]  Bernard W. Silverman,et al.  The discrete wavelet transform in S , 1994 .

[6]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[7]  J. Beran Statistical methods for data with long-range dependence , 1992 .

[8]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[9]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[10]  Steven P. Neal,et al.  An Application of Wavelet Signal Processing to Ultrasonic Nondestructive Evaluation , 1996 .

[11]  D. Donoho Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .

[12]  Yazhen Wang,et al.  Change Curve Estimation via Wavelets , 1998 .

[13]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[14]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[15]  S.P. Neal,et al.  Flaw signature estimation in ultrasonic nondestructive evaluation using the Wiener filter with limited prior information , 1993, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[16]  Yazhen Wang,et al.  Fractal Function Estimation via Wavelet Shrinkage , 1997 .

[17]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[18]  Yazhen Wang Jump and sharp cusp detection by wavelets , 1995 .

[19]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[20]  Yazhen Wang Function estimation via wavelet shrinkage for long-memory data , 1996 .

[21]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[22]  Mark G. Low Bias-Variance Tradeoffs in Functional Estimation Problems , 1995 .

[23]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[24]  E. Kolaczyk Wavelet Methods For The Inversion Of Certain Homogeneous Linear Operators In The Presence Of Noisy D , 1994 .

[25]  Irène Gijbels,et al.  On the Estimation of Jump Points in Smooth Curves , 1999 .

[26]  B. Silverman,et al.  The Stationary Wavelet Transform and some Statistical Applications , 1995 .

[27]  David L. Donoho,et al.  Nonlinear Wavelet Methods for Recovery of Signals, Densities, and Spectra from Indirect and Noisy Da , 1993 .

[28]  L. Brown,et al.  Asymptotic equivalence of nonparametric regression and white noise , 1996 .

[29]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[30]  Minimax estimation via wavelets for indirect long-memory data , 1997 .

[31]  Cun-Hui Zhang Fourier Methods for Estimating Mixing Densities and Distributions , 1990 .