Rapid survey of de novo mutations in naturally growing tree species following the March 2011 disaster in Fukushima: The effect of low-dose-rate radiation.

[1]  R. Petit,et al.  Asymmetric character displacement in mixed oak stands. , 2022, The New phytologist.

[2]  S. Ueno,et al.  Mutational effects of chronic gamma radiation throughout the life cycle of Arabidopsis thaliana: Insight into radiosensitivity in the reproductive stage. , 2022, The Science of the total environment.

[3]  E. Kazakova,et al.  Radiation Hormesis in Plants , 2022, Current Opinion in Toxicology.

[4]  S. Miura,et al.  Forest Radioecology in Fukushima: Radiocesium Dynamics, Impact, and Future , 2022 .

[5]  A. Yoder,et al.  The challenge and promise of estimating the de novo mutation rate from whole‐genome comparisons among closely related individuals , 2021, Molecular ecology.

[6]  S. Kaneko,et al.  Radiation dose rate to Japanese cedar and plants collected from Okuma, Fukushima Prefecture. , 2021, The Science of the total environment.

[7]  V. Yoschenko,et al.  Multifaceted effects of chronic radiation exposure in Japanese red pines from Fukushima prefecture. , 2020, The Science of the total environment.

[8]  N. Takamura,et al.  Environmental Remediation of the difficult-to-return zone in Tomioka Town, Fukushima Prefecture , 2020, Scientific Reports.

[9]  S. Ueno,et al.  Development of diagnostic PCR and LAMP markers for MALE STERILITY 1 (MS1) in Cryptomeria japonica D. Don , 2020, BMC Research Notes.

[10]  Y. Oono,et al.  Genetic Consequences of Acute/Chronic Gamma and Carbon Ion Irradiation of Arabidopsis thaliana , 2020, Frontiers in Plant Science.

[11]  L. Gianfranceschi,et al.  Long walk to genomics: History and current approaches to genome sequencing and assembly , 2019, Computational and structural biotechnology journal.

[12]  S. Otto,et al.  Somatic mutations substantially increase the per‐generation mutation rate in the conifer Picea sitchensis , 2019, Evolution letters.

[13]  S. Isobe,et al.  Phased genome sequence of an interspecific hybrid flowering cherry, ‘Somei-Yoshino’ (Cerasus × yedoensis) , 2019, bioRxiv.

[14]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[15]  Per B. Brockhoff,et al.  lmerTest Package: Tests in Linear Mixed Effects Models , 2017 .

[16]  Christina A. Castellani,et al.  VarScan2 analysis of de novo variants in monozygotic twins discordant for schizophrenia , 2017, Psychiatric genetics.

[17]  V. Yoschenko,et al.  Morphological abnormalities in Japanese red pine (Pinus densiflora) at the territories contaminated as a result of the accident at Fukushima Dai-Ichi Nuclear Power Plant. , 2016, Journal of environmental radioactivity.

[18]  A. Yemets,et al.  Adaptation of the gymnosperms to the conditions of irradiation in the Chernobyl zone: from morphological abnormalities to the molecular genetic consequences , 2016, Cytology and Genetics.

[19]  L. Hurst,et al.  Mutation rate analysis via parent–progeny sequencing of the perennial peach. I. A low rate in woody perennials and a higher mutagenicity in hybrids , 2016, Proceedings of the Royal Society B: Biological Sciences.

[20]  Liliana Florea,et al.  Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads , 2015, GigaScience.

[21]  H. Tachida,et al.  Evolutionary rate variation in two conifer species, Taxodium distichum (L.) Rich. var. distichum (baldcypress) and Cryptomeria japonica (Thunb. ex L.f.) D. Don (Sugi, Japanese cedar). , 2015, Genes & genetic systems.

[22]  V. Yoschenko,et al.  Morphological defects in native Japanese fir trees around the Fukushima Daiichi Nuclear Power Plant , 2015, Scientific Reports.

[23]  J. Puritz,et al.  dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms , 2014, PeerJ.

[24]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[25]  T. Gojobori,et al.  Origins of Japanese flowering cherry (Prunus subgenus Cerasus) cultivars revealed using nuclear SSR markers , 2014, Tree Genetics & Genomes.

[26]  D. Halligan,et al.  Estimation of the Spontaneous Mutation Rate per Nucleotide Site in a Drosophila melanogaster Full-Sib Family , 2013, Genetics.

[27]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[28]  B. Zonneveld,et al.  Conifer genome sizes of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram , 2012 .

[29]  H. Hoekstra,et al.  Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species , 2012, PloS one.

[30]  P. Hostert,et al.  Consequences of nuclear accidents for biodiversity and ecosystem services , 2012 .

[31]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[32]  V. Yoschenko,et al.  CHRONIC IRRADIATION OF SCOTS PINE TREES (PINUS SYLVESTRIS) IN THE CHERNOBYL EXCLUSION ZONE: DOSIMETRY AND RADIOBIOLOGICAL EFFECTS , 2011, Health physics.

[33]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[34]  C. H. Clement,et al.  Environmental protection : the concept and use of reference animals and plants , 2009 .

[35]  S. Fesenko,et al.  Effects of non-human species irradiation after the Chernobyl NPP accident. , 2008, Environment international.

[36]  Jack A. M. Leunissen,et al.  Turning CFCs into salt. , 1996, Nucleic Acids Res..

[37]  P. Taberlet,et al.  Genotyping errors: causes, consequences and solutions , 2005, Nature Reviews Genetics.

[38]  K. Baetcke,et al.  The relationship of DNA content to nuclear and chromosome volumes and to radiosensitivity (LD50). , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Sparrow,et al.  Correlation of interphase chromosome volume and reduction of viable seed set by chronic irradiation of 21 cultivated plants during reproductive stages , 1965 .