A Method for Assessing Extent and Sources of Heterogeneity of Residual Variances in Mixed Linear Models

Abstract A statistical method is presented for identifying sources of heterogeneity of residual variance in mixed linear models. The method is based on a log-linear model for the residual variances from which parameters can be estimated and hypotheses tested using the marginal likelihood function. It can be viewed as a generalization of Bartlett's test. Computing procedures are presented and an illustration is given. The method can be used with experimental or field data, e.g., to detect possible preferential treatment of daughters of sires or to investigate the possible segregation of major genes.

[1]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[2]  G. Koch,et al.  Analysis of categorical data by linear models. , 1969, Biometrics.

[3]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[4]  S. R. Searle Linear Models , 1971 .

[5]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[6]  L. D. Vleck,et al.  Genetic parameters for first lactation milk yields at three levels of herd production. , 1987 .

[7]  D. Gianola,et al.  Prediction of breeding values when variances are not known , 1986, Génétique Sélection Évolution.

[8]  C. R. Henderson Applications of linear models in animal breeding , 1984 .

[9]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[10]  D. Gianola,et al.  Empirical Bayes estimation of parameters for n polygenic binary traits , 1987, Génétique, sélection, évolution.

[11]  L. D. Vleck,et al.  ASPECTS OF SELECTION FOR PERFORMANCE IN SEVERAL ENVIRONMENTS WITH HETEROGENEOUS VARIANCES , 1987 .

[12]  D. G. Herr On the History of ANOVA in Unbalanced, Factorial Designs: The First 30 Years , 1986 .

[13]  M. Aitkin Modelling variance heterogeneity in normal regression using GLIM , 1987 .

[14]  George E. P. Box,et al.  Dispersion Effects From Fractional Designs , 1986 .

[15]  J. Nelder,et al.  An extended quasi-likelihood function , 1987 .

[16]  I. Meilijson A fast improvement to the EM algorithm on its own terms , 1989 .

[17]  W. G. Hill On selection among groups with heterogeneous variance , 1984 .

[18]  G. Judge,et al.  The Theory and Practice of Econometrics , 1981 .

[19]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .

[20]  J. Berkson MINIMUM CHI-SQUARE, NOT MAXIMUM LIKELIHOOD! , 1980 .

[21]  L. Schaeffer,et al.  Effect of Heterogeneity of Variance on Dairy Sire Evaluation , 1988 .

[22]  Griffiths Da Maximum likelihood estimation for the beta-binomial distribution and an application to the household distribution of the total number of cases of a disease. , 1973 .

[23]  R. Carroll,et al.  Variance Function Estimation , 1987 .

[24]  D. Pregibon,et al.  Analyzing dispersion effects from replicated factorial experiments , 1988 .