Toward Powerful Probes of Neutrino Self-Interactions in Supernovae.

Neutrinos remain mysterious. As an example, enhanced self-interactions ($\nu$SI), which would have broad implications, are allowed. At the high neutrino densities within core-collapse supernovae, $\nu$SI should be important, but robust observables have been lacking. We show that $\nu$SI make neutrinos form a tightly coupled fluid that expands under relativistic hydrodynamics. The outflow becomes either a burst or a steady-state wind; which occurs here is uncertain. Though the diffusive environment where neutrinos are produced may make a wind more likely, further work is needed to determine when each case is realized. In the burst-outflow case, $\nu$SI increase the duration of the neutrino signal, and even a simple analysis of SN 1987A data has powerful sensitivity. For the wind-outflow case, we outline several promising ideas that may lead to new observables. Combined, these results are important steps towards solving the 35-year-old puzzle of how $\nu$SI affect supernovae.

[1]  M. Masud,et al.  Probing non-standard neutrino interactions with a light boson from next galactic and diffuse supernova neutrinos , 2022, Journal of High Energy Physics.

[2]  Zhen Liu,et al.  Neutrino self-interactions: A white paper , 2022, Physics of the Dark Universe.

[3]  T. Han,et al.  Leptonic scalars and collider signatures in a UV-complete model , 2021, Journal of High Energy Physics.

[4]  J. Beacom,et al.  Probing secret interactions of astrophysical neutrinos in the high-statistics era , 2021, Physical Review D.

[5]  S. Hannestad,et al.  Updated constraints on massive neutrino self-interactions from cosmology in light of the H0 tension , 2020, Journal of Cosmology and Astroparticle Physics.

[6]  Anirban Das,et al.  Flavor-specific interaction favors strong neutrino self-coupling in the early universe , 2020, Journal of Cosmology and Astroparticle Physics.

[7]  T. B. Watson,et al.  IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data , 2020, Physical Review D.

[8]  L. Roberts,et al.  Exciting prospects for detecting late-time neutrinos from core-collapse supernovae , 2020, Physical Review D.

[9]  T. Schwetz,et al.  The fate of hints: updated global analysis of three-flavor neutrino oscillations , 2020, Journal of High Energy Physics.

[10]  V. Brdar,et al.  Revisiting neutrino self-interaction constraints from Z and τ decays , 2020, Physical Review D.

[11]  E. Keto Stability and solution of the time-dependent Bondi–Parker flow , 2020, 2002.09004.

[12]  I. Tamborra,et al.  Bounds on secret neutrino interactions from high-energy astrophysical neutrinos , 2020, Physical Review D.

[13]  I. Tamborra,et al.  Core-collapse supernovae stymie secret neutrino interactions , 2019, Physical Review D.

[14]  J. Kopp,et al.  Decaying sterile neutrinos and the short baseline oscillation anomalies , 2019, Physical Review D.

[15]  Yue Zhang,et al.  Dodelson-Widrow Mechanism in the Presence of Self-Interacting Neutrinos. , 2019, Physical review letters.

[16]  D. Radice,et al.  The overarching framework of core-collapse supernova explosions as revealed by 3D fornax simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  M. Escudero,et al.  A CMB search for the neutrino mass mechanism and its relation to the Hubble tension , 2019, The European Physical Journal C.

[18]  K. Kelly,et al.  Constraining the Self-Interacting Neutrino Interpretation of the Hubble Tension. , 2019, Physical review letters.

[19]  P. Denton,et al.  Constraints on inflation with an extended neutrino sector , 2019, Physical Review D.

[20]  I. Shoemaker,et al.  Neutrino Echoes from Multimessenger Transient Sources. , 2019, Physical review letters.

[21]  O. Dor'e,et al.  Neutrino puzzle: Anomalies, interactions, and cosmological tensions , 2019, Physical Review D.

[22]  S. Parke,et al.  Scalar Nonstandard Interactions in Neutrino Oscillation. , 2018, Physical review letters.

[23]  A. Arbey,et al.  AlterBBN v2: A public code for calculating Big-Bang nucleosynthesis constraints in alternative cosmologies , 2018, Comput. Phys. Commun..

[24]  A. Gouvea,et al.  Lepton-number-charged scalars and neutrino beamstrahlung , 2018, 1802.00009.

[25]  K. Kotake,et al.  Impact of Neutrino Opacities on Core-collapse Supernova Simulations , 2018, 1801.02703.

[26]  Guo-Yuan Huang,et al.  Observational constraints on secret neutrino interactions from big bang nucleosynthesis , 2017, 1712.04792.

[27]  A. Dighe,et al.  Nonstandard neutrino self-interactions in a supernova and fast flavor conversions , 2017, 1709.06858.

[28]  Anirban Das,et al.  New effects of non-standard self-interactions of neutrinos in a supernova , 2017, 1705.00468.

[29]  Zhen Pan,et al.  A tale of two modes: neutrino free-streaming in the early universe , 2017, 1704.06657.

[30]  A. Mirizzi,et al.  Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions , 2016, 1609.00528.

[31]  B. Müller,et al.  The Status of Multi-Dimensional Core-Collapse Supernova Models , 2016, Publications of the Astronomical Society of Australia.

[32]  C. Ott,et al.  GENERAL-RELATIVISTIC THREE-DIMENSIONAL MULTI-GROUP NEUTRINO RADIATION-HYDRODYNAMICS SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE , 2016, 1604.07848.

[33]  Tum,et al.  Physics of Core-Collapse Supernovae in Three Dimensions: a Sneak Preview , 2016, 1602.05576.

[34]  I. Shoemaker,et al.  Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes , 2015, 1512.07228.

[35]  Yang Bai,et al.  Three twin neutrinos: Evidence from LSND and MiniBooNE , 2015, 1512.05357.

[36]  T. Araki,et al.  MeV scale leptonic force for cosmic neutrino spectrum and muon anomalous magnetic moment , 2015, 1508.07471.

[37]  O. E. Bronson Messer,et al.  THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVA SIMULATED USING A 15 M⊙ PROGENITOR , 2015, 1505.05110.

[38]  K. Ioka,et al.  IceCube PeV-EeV neutrinos and secret interactions of neutrinos , 2014, 1404.2279.

[39]  J. Beacom,et al.  Cosmic neutrino cascades from secret neutrino interactions , 2014, 1404.2288.

[40]  H. Janka,et al.  High-resolution supernova neutrino spectra represented by a simple fit , 2012, 1211.3920.

[41]  A. Burrows Colloquium: Perspectives on core-collapse supernova theory , 2012, 1210.4921.

[42]  H. Janka Explosion Mechanisms of Core-Collapse Supernovae , 2012, 1206.2503.

[43]  K. Kotake,et al.  Multimessengers from core-collapse supernovae: multidimensionality as a key to bridge theory and observation , 2012, 1204.2330.

[44]  Alexandre Arbey,et al.  AlterBBN: A program for calculating the BBN abundances of the elements in alternative cosmologies , 2011, Comput. Phys. Commun..

[45]  A. Mirizzi,et al.  Nonstandard neutrino-neutrino refractive effects in dense neutrino gases , 2008, 0810.2297.

[46]  A. Ferrari,et al.  PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.

[47]  D. Hooper Detecting MeV gauge bosons with high-energy neutrino telescopes , 2007, hep-ph/0701194.

[48]  S. Nandi,et al.  A New two Higgs doublet model , 2006, hep-ph/0610253.

[49]  E. Pierpaoli,et al.  Cosmological signatures of interacting neutrinos , 2005, astro-ph/0511410.

[50]  G. Raffelt,et al.  Constraining invisible neutrino decays with the cosmic microwave background , 2005, hep-ph/0509278.

[51]  Kei Kotake,et al.  Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae , 2005, astro-ph/0509456.

[52]  H. Murayama,et al.  Models of neutrino mass with a low cutoff scale , 2005, hep-ph/0502176.

[53]  S. Hannestad Structure formation with strongly interacting neutrinos—implications for the cosmological neutrino mass bound , 2004, astro-ph/0411475.

[54]  T. Piran The physics of gamma-ray bursts , 2004, astro-ph/0405503.

[55]  L. Hall,et al.  CMB signals of neutrino mass generation , 2003, hep-ph/0312267.

[56]  Y. Farzan Bounds on the Coupling of the Majoron to Light Neutrinos from Supernova Cooling , 2002, hep-ph/0211375.

[57]  H. Janka,et al.  Monte Carlo Study of Supernova Neutrino Spectra Formation , 2002, astro-ph/0208035.

[58]  H. Janka,et al.  Electron Neutrino Pair Annihilation: A New Source for Muon and Tau Neutrinos in Supernovae , 2002, astro-ph/0205006.

[59]  K. Scholberg,et al.  Supernova neutrino detection , 2000, 1205.6003.

[60]  M. Kachelriess,et al.  Supernova bounds on Majoron-emitting decays of light neutrinos , 2000, hep-ph/0001039.

[61]  A. Dighe,et al.  Identifying the neutrino mass spectrum from the neutrino burst from a supernova , 1999 .

[62]  Y. Grossman,et al.  Neutrino propagation in matter with general interactions , 1999, hep-ph/9903517.

[63]  Burgess,et al.  New class of Majoron-emitting double- beta decays. , 1993, hep-ph/9307316.

[64]  Choi,et al.  Majorons and supernova cooling. , 1990, Physical review. D, Particles and fields.

[65]  A. Burrows Neutrinos From Supernova Explosions , 1990 .

[66]  Z. Berezhiani,et al.  Matter-induced neutrino decay and supernova 1987A , 1989 .

[67]  V. Teplitz,et al.  Implications of relativistic gas dynamics for neutrino-neutrino cross sections , 1989 .

[68]  S. Peris,et al.  Majoron couplings to neutrinos and SN1987A , 1988 .

[69]  James R. Wilson,et al.  The majoron model and stellar collapse , 1988 .

[70]  Hirata,et al.  Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A. , 1988, Physical review. D, Particles and fields.

[71]  Learned,et al.  Angular distribution of events from SN1987A. , 1988, Physical review. D, Particles and fields.

[72]  Choi,et al.  Constraints on the Majoron interactions from the supernova SN1987A. , 1988, Physical review. D, Particles and fields.

[73]  Aharonov,et al.  Implications of the triplet-Majoron model for the supernova SN1987A. , 1988, Physical Review D, Particles and fields.

[74]  R. Konoplich,et al.  Constraints on triplet majoron model due to observations of neutrinos from stellar collapse , 1988 .

[75]  A. Manohar A limit on the neutrino-neutrino scattering cross section from the supernova☆ , 1987 .

[76]  Park,et al.  Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. , 1987, Physical review letters.

[77]  A. Burrows On detecting stellar collapse with neutrinos , 1984 .

[78]  C. Pethick,et al.  EFFECTS OF NUCLEON NUCLEON INTERACTIONS ON SCATTERING OF NEUTRINOS IN NEUTRON MATTER , 1982 .

[79]  H. Georgi,et al.  Unconventional model of neutrino masses , 1981 .

[80]  M. Roncadelli,et al.  Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number , 1981 .

[81]  W. Arnett Neutrino trapping during gravitational collapse of stars. , 1977 .

[82]  Katsuhiko Sato Supernova Explosion and Neutral Currents of Weak Interaction , 1975 .

[83]  Katsuhiko Sato Neutrino Degeneracy in Supernova Cores and Neutral Current of Weak Interaction , 1975 .

[84]  E. Parker Dynamical theory of the solar wind , 1965 .

[85]  J. L. Saunderson,et al.  Multiple Scattering of Electrons , 1940 .

[86]  Vladimir S. Netchitailo Hubble Tension , 2022, Journal of High Energy Physics, Gravitation and Cosmology.

[87]  Michael,et al.  Supernova 1987a and the secret interactions of neutrinos , 1998 .

[88]  S. Woosley The Birth of Neutron Stars , 1987 .

[89]  S. R. Seidel,et al.  Observation of a neutrino burst from supernova SN 1987A. , 1987 .

[90]  P. K. Kuroda Synthesis of the Elements in Stars , 1982 .

[91]  横沢 正芳 Relativistic hydrodynamics of a free expansion and a shock wave in one-dimension : super-light expansion of extra-galactic radio sources , 1979 .