Toward Powerful Probes of Neutrino Self-Interactions in Supernovae.
暂无分享,去创建一个
[1] M. Masud,et al. Probing non-standard neutrino interactions with a light boson from next galactic and diffuse supernova neutrinos , 2022, Journal of High Energy Physics.
[2] Zhen Liu,et al. Neutrino self-interactions: A white paper , 2022, Physics of the Dark Universe.
[3] T. Han,et al. Leptonic scalars and collider signatures in a UV-complete model , 2021, Journal of High Energy Physics.
[4] J. Beacom,et al. Probing secret interactions of astrophysical neutrinos in the high-statistics era , 2021, Physical Review D.
[5] S. Hannestad,et al. Updated constraints on massive neutrino self-interactions from cosmology in light of the H0 tension , 2020, Journal of Cosmology and Astroparticle Physics.
[6] Anirban Das,et al. Flavor-specific interaction favors strong neutrino self-coupling in the early universe , 2020, Journal of Cosmology and Astroparticle Physics.
[7] T. B. Watson,et al. IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data , 2020, Physical Review D.
[8] L. Roberts,et al. Exciting prospects for detecting late-time neutrinos from core-collapse supernovae , 2020, Physical Review D.
[9] T. Schwetz,et al. The fate of hints: updated global analysis of three-flavor neutrino oscillations , 2020, Journal of High Energy Physics.
[10] V. Brdar,et al. Revisiting neutrino self-interaction constraints from Z and τ decays , 2020, Physical Review D.
[11] E. Keto. Stability and solution of the time-dependent Bondi–Parker flow , 2020, 2002.09004.
[12] I. Tamborra,et al. Bounds on secret neutrino interactions from high-energy astrophysical neutrinos , 2020, Physical Review D.
[13] I. Tamborra,et al. Core-collapse supernovae stymie secret neutrino interactions , 2019, Physical Review D.
[14] J. Kopp,et al. Decaying sterile neutrinos and the short baseline oscillation anomalies , 2019, Physical Review D.
[15] Yue Zhang,et al. Dodelson-Widrow Mechanism in the Presence of Self-Interacting Neutrinos. , 2019, Physical review letters.
[16] D. Radice,et al. The overarching framework of core-collapse supernova explosions as revealed by 3D fornax simulations , 2019, Monthly Notices of the Royal Astronomical Society.
[17] M. Escudero,et al. A CMB search for the neutrino mass mechanism and its relation to the Hubble tension , 2019, The European Physical Journal C.
[18] K. Kelly,et al. Constraining the Self-Interacting Neutrino Interpretation of the Hubble Tension. , 2019, Physical review letters.
[19] P. Denton,et al. Constraints on inflation with an extended neutrino sector , 2019, Physical Review D.
[20] I. Shoemaker,et al. Neutrino Echoes from Multimessenger Transient Sources. , 2019, Physical review letters.
[21] O. Dor'e,et al. Neutrino puzzle: Anomalies, interactions, and cosmological tensions , 2019, Physical Review D.
[22] S. Parke,et al. Scalar Nonstandard Interactions in Neutrino Oscillation. , 2018, Physical review letters.
[23] A. Arbey,et al. AlterBBN v2: A public code for calculating Big-Bang nucleosynthesis constraints in alternative cosmologies , 2018, Comput. Phys. Commun..
[24] A. Gouvea,et al. Lepton-number-charged scalars and neutrino beamstrahlung , 2018, 1802.00009.
[25] K. Kotake,et al. Impact of Neutrino Opacities on Core-collapse Supernova Simulations , 2018, 1801.02703.
[26] Guo-Yuan Huang,et al. Observational constraints on secret neutrino interactions from big bang nucleosynthesis , 2017, 1712.04792.
[27] A. Dighe,et al. Nonstandard neutrino self-interactions in a supernova and fast flavor conversions , 2017, 1709.06858.
[28] Anirban Das,et al. New effects of non-standard self-interactions of neutrinos in a supernova , 2017, 1705.00468.
[29] Zhen Pan,et al. A tale of two modes: neutrino free-streaming in the early universe , 2017, 1704.06657.
[30] A. Mirizzi,et al. Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions , 2016, 1609.00528.
[31] B. Müller,et al. The Status of Multi-Dimensional Core-Collapse Supernova Models , 2016, Publications of the Astronomical Society of Australia.
[32] C. Ott,et al. GENERAL-RELATIVISTIC THREE-DIMENSIONAL MULTI-GROUP NEUTRINO RADIATION-HYDRODYNAMICS SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE , 2016, 1604.07848.
[33] Tum,et al. Physics of Core-Collapse Supernovae in Three Dimensions: a Sneak Preview , 2016, 1602.05576.
[34] I. Shoemaker,et al. Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes , 2015, 1512.07228.
[35] Yang Bai,et al. Three twin neutrinos: Evidence from LSND and MiniBooNE , 2015, 1512.05357.
[36] T. Araki,et al. MeV scale leptonic force for cosmic neutrino spectrum and muon anomalous magnetic moment , 2015, 1508.07471.
[37] O. E. Bronson Messer,et al. THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVA SIMULATED USING A 15 M⊙ PROGENITOR , 2015, 1505.05110.
[38] K. Ioka,et al. IceCube PeV-EeV neutrinos and secret interactions of neutrinos , 2014, 1404.2279.
[39] J. Beacom,et al. Cosmic neutrino cascades from secret neutrino interactions , 2014, 1404.2288.
[40] H. Janka,et al. High-resolution supernova neutrino spectra represented by a simple fit , 2012, 1211.3920.
[41] A. Burrows. Colloquium: Perspectives on core-collapse supernova theory , 2012, 1210.4921.
[42] H. Janka. Explosion Mechanisms of Core-Collapse Supernovae , 2012, 1206.2503.
[43] K. Kotake,et al. Multimessengers from core-collapse supernovae: multidimensionality as a key to bridge theory and observation , 2012, 1204.2330.
[44] Alexandre Arbey,et al. AlterBBN: A program for calculating the BBN abundances of the elements in alternative cosmologies , 2011, Comput. Phys. Commun..
[45] A. Mirizzi,et al. Nonstandard neutrino-neutrino refractive effects in dense neutrino gases , 2008, 0810.2297.
[46] A. Ferrari,et al. PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.
[47] D. Hooper. Detecting MeV gauge bosons with high-energy neutrino telescopes , 2007, hep-ph/0701194.
[48] S. Nandi,et al. A New two Higgs doublet model , 2006, hep-ph/0610253.
[49] E. Pierpaoli,et al. Cosmological signatures of interacting neutrinos , 2005, astro-ph/0511410.
[50] G. Raffelt,et al. Constraining invisible neutrino decays with the cosmic microwave background , 2005, hep-ph/0509278.
[51] Kei Kotake,et al. Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae , 2005, astro-ph/0509456.
[52] H. Murayama,et al. Models of neutrino mass with a low cutoff scale , 2005, hep-ph/0502176.
[53] S. Hannestad. Structure formation with strongly interacting neutrinos—implications for the cosmological neutrino mass bound , 2004, astro-ph/0411475.
[54] T. Piran. The physics of gamma-ray bursts , 2004, astro-ph/0405503.
[55] L. Hall,et al. CMB signals of neutrino mass generation , 2003, hep-ph/0312267.
[56] Y. Farzan. Bounds on the Coupling of the Majoron to Light Neutrinos from Supernova Cooling , 2002, hep-ph/0211375.
[57] H. Janka,et al. Monte Carlo Study of Supernova Neutrino Spectra Formation , 2002, astro-ph/0208035.
[58] H. Janka,et al. Electron Neutrino Pair Annihilation: A New Source for Muon and Tau Neutrinos in Supernovae , 2002, astro-ph/0205006.
[59] K. Scholberg,et al. Supernova neutrino detection , 2000, 1205.6003.
[60] M. Kachelriess,et al. Supernova bounds on Majoron-emitting decays of light neutrinos , 2000, hep-ph/0001039.
[61] A. Dighe,et al. Identifying the neutrino mass spectrum from the neutrino burst from a supernova , 1999 .
[62] Y. Grossman,et al. Neutrino propagation in matter with general interactions , 1999, hep-ph/9903517.
[63] Burgess,et al. New class of Majoron-emitting double- beta decays. , 1993, hep-ph/9307316.
[64] Choi,et al. Majorons and supernova cooling. , 1990, Physical review. D, Particles and fields.
[65] A. Burrows. Neutrinos From Supernova Explosions , 1990 .
[66] Z. Berezhiani,et al. Matter-induced neutrino decay and supernova 1987A , 1989 .
[67] V. Teplitz,et al. Implications of relativistic gas dynamics for neutrino-neutrino cross sections , 1989 .
[68] S. Peris,et al. Majoron couplings to neutrinos and SN1987A , 1988 .
[69] James R. Wilson,et al. The majoron model and stellar collapse , 1988 .
[70] Hirata,et al. Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A. , 1988, Physical review. D, Particles and fields.
[71] Learned,et al. Angular distribution of events from SN1987A. , 1988, Physical review. D, Particles and fields.
[72] Choi,et al. Constraints on the Majoron interactions from the supernova SN1987A. , 1988, Physical review. D, Particles and fields.
[73] Aharonov,et al. Implications of the triplet-Majoron model for the supernova SN1987A. , 1988, Physical Review D, Particles and fields.
[74] R. Konoplich,et al. Constraints on triplet majoron model due to observations of neutrinos from stellar collapse , 1988 .
[75] A. Manohar. A limit on the neutrino-neutrino scattering cross section from the supernova☆ , 1987 .
[76] Park,et al. Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. , 1987, Physical review letters.
[77] A. Burrows. On detecting stellar collapse with neutrinos , 1984 .
[78] C. Pethick,et al. EFFECTS OF NUCLEON NUCLEON INTERACTIONS ON SCATTERING OF NEUTRINOS IN NEUTRON MATTER , 1982 .
[79] H. Georgi,et al. Unconventional model of neutrino masses , 1981 .
[80] M. Roncadelli,et al. Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number , 1981 .
[81] W. Arnett. Neutrino trapping during gravitational collapse of stars. , 1977 .
[82] Katsuhiko Sato. Supernova Explosion and Neutral Currents of Weak Interaction , 1975 .
[83] Katsuhiko Sato. Neutrino Degeneracy in Supernova Cores and Neutral Current of Weak Interaction , 1975 .
[84] E. Parker. Dynamical theory of the solar wind , 1965 .
[85] J. L. Saunderson,et al. Multiple Scattering of Electrons , 1940 .
[86] Vladimir S. Netchitailo. Hubble Tension , 2022, Journal of High Energy Physics, Gravitation and Cosmology.
[87] Michael,et al. Supernova 1987a and the secret interactions of neutrinos , 1998 .
[88] S. Woosley. The Birth of Neutron Stars , 1987 .
[89] S. R. Seidel,et al. Observation of a neutrino burst from supernova SN 1987A. , 1987 .
[90] P. K. Kuroda. Synthesis of the Elements in Stars , 1982 .
[91] 横沢 正芳. Relativistic hydrodynamics of a free expansion and a shock wave in one-dimension : super-light expansion of extra-galactic radio sources , 1979 .