Proliferation of the hyperthermophilic archaeon Pyrobaculum islandicum by cell fission

[1]  S. Mullapudi,et al.  Adenine Nucleotide-dependent Regulation of Assembly of Bacterial Tubulin-like FtsZ by a Hypermorph of Bacterial Actin-like FtsA* , 2009, Journal of Biological Chemistry.

[2]  R. Bernander,et al.  Cell division and the ESCRT complex , 2009, Communicative & integrative biology.

[3]  Rolf Bernander,et al.  A unique cell division machinery in the Archaea , 2008, Proceedings of the National Academy of Sciences.

[4]  R. Bernander,et al.  Cell Cycle Characteristics of Crenarchaeota: Unity among Diversity , 2008, Journal of bacteriology.

[5]  R. Bernander,et al.  DNA Content and Nucleoid Distribution in Methanothermobacter thermautotrophicus , 2005, Journal of bacteriology.

[6]  E. Kamitsubo,et al.  Immobilization of endoplasm flowing contiguous to the actin cables upon electrical stimulus inNitella internodes , 1992, Protoplasma.

[7]  K. O. Stetter,et al.  Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C , 1987, Archives of Microbiology.

[8]  A. Zehnder,et al.  Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium , 2004, Archives of Microbiology.

[9]  B. Wickstead,et al.  Molecular Evolution of FtsZ Protein Sequences Encoded Within the Genomes of Archaea, Bacteria, and Eukaryota , 2003, Journal of Molecular Evolution.

[10]  H. Huber,et al.  In Vivo Observation of Cell Division of Anaerobic Hyperthermophiles by Using a High-Intensity Dark-Field Microscope , 1999, Journal of bacteriology.

[11]  K. Suzuki,et al.  Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. , 1999, International journal of systematic bacteriology.

[12]  K. Suzuki,et al.  Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote. , 1998, International journal of systematic bacteriology.

[13]  K. Stetter,et al.  Cultivation of hyperthermophilic archaea in capillary tubes resulting in improved preservation of fine structures , 1997, Archives of Microbiology.

[14]  R. Huber,et al.  Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum , 1993, Applied and environmental microbiology.

[15]  W. Baumeister,et al.  Structural features of archaebacterial cell envelopes , 1992, Journal of bioenergetics and biomembranes.

[16]  R. Huber,et al.  The cell envelope of the hyperthermophilic archaebacterium Pyrobaculum organotrophum consists of two regularly arrayed protein layers: three‐dimensional structure of the outer layer , 1991, Molecular microbiology.

[17]  H. Klenk,et al.  Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides , 1990, Journal of bacteriology.

[18]  R. Huber,et al.  Three-Dimensional Structure of the Crystalline Protein Envelope Layer of the Hyperthermophilic Archaebacterium Pyrobaculum islandicum , 1990 .

[19]  W. Baumeister,et al.  The cell envelope of Thermoproteus tenax: three‐dimensional structure of the surface layer and its role in shape maintenance , 1987, The EMBO journal.

[20]  W. Zillig,et al.  CHAPTER 2 – Thermoplasma and the Thermophilic Sulfur-Dependent Archaebacteria , 1985 .

[21]  D. Ferguson,et al.  Electron Microscopy of a Filamentous, Segmented Bacterium Attached to the Small Intestine of Mice from a Laboratory Animal Colony in Denmark , 1979, Acta pathologica et microbiologica Scandinavica. Section B, Microbiology.

[22]  T. A. Krulwich,et al.  Ultrastructural Explanation for Snapping Postfission Movements in Arthrobacter crystallopoietes , 1971, Journal of bacteriology.