Search strategies for TeV scale fermionic top partners with charge 2/3
暂无分享,去创建一个
[1] M. Backovic,et al. Discovering heavy new physics in boosted Z channels: Z →l + l - vs Z →ν ν ̄ , 2015 .
[2] A. Deandrea,et al. Interplay of vector-like top partner multiplets in a realistic mixing set-up , 2015, 1502.00370.
[3] R. Rattazzi,et al. The composite twin Higgs scenario , 2015, 1501.07803.
[4] Lian-tao Wang,et al. Twin Higgs mechanism and a composite Higgs boson , 2015, 1501.07890.
[5] R. Sundrum,et al. Naturalness in the dark at the LHC , 2015, 1501.05310.
[6] G. Cacciapaglia,et al. Anarchic Yukawas and top partial compositeness: the flavour of a successful marriage , 2015, 1501.03818.
[7] J. Andrea,et al. Discovery potential for T′ → tZ in the trilepton channel at the LHC , 2014, 1411.7587.
[8] M. Geller,et al. Holographic twin Higgs model. , 2014, Physical review letters.
[9] Pietro Longhi,et al. Neutral naturalness from orbifold Higgs models. , 2014, Physical review letters.
[10] J. Reuter,et al. Top Partner Discovery in the T → tZ channel at the LHC , 2014, 1409.6962.
[11] R. Harnik,et al. Natural electroweak breaking from a mirror symmetry. , 2005, Physical review letters.
[12] Pietro Longhi,et al. The Orbifold Higgs , 2014, 1411.7393.
[13] M. Backovic,et al. Boosted event topologies from TeV scale light quark composite partners , 2014, 1410.8131.
[14] C. Wymant,et al. Boosted Higgs shapes , 2014, The European Physical Journal C.
[15] M. Backovic,et al. LHC top partner searches beyond the 2 TeV mass region , 2014, 1409.0409.
[16] A. Wulzer,et al. On the interpretation of Top Partners searches , 2014, 1409.0100.
[17] J. Cogan,et al. Jet-images: computer vision inspired techniques for jet tagging , 2014, 1407.5675.
[18] Tim M. P. Tait,et al. Tagging boosted Ws with wavelets , 2014, 1404.1929.
[19] D. Kar,et al. Reconstructing singly produced top partners in decays to Wb , 2014, 1403.7490.
[20] D. Pappadopulo,et al. Heavy vector triplets: bridging theory and data , 2014, 1402.4431.
[21] G. Soyez,et al. Soft drop , 2014, 1402.2657.
[22] M. Spannowsky,et al. Boosting Top Partner Searches in Composite Higgs Models , 2013, 1308.6601.
[23] O. Gabizon,et al. Measuring boosted tops in semi-leptonic tt̄ events for the standard model and beyond , 2014 .
[24] Jinmian Li,et al. Towards the fate of natural composite Higgs model through single t′ search at the 8 TeV LHC , 2013, 1306.5841.
[25] Christophe Grojean,et al. Light top partners and precision physics , 2013, 1306.4655.
[26] G. Moreau,et al. LHC signatures of warped-space vectorlike quarks , 2013, 1306.2656.
[27] J. A. Aguilar-Saavedra,et al. Handbook of vectorlike quarks: Mixing and single production , 2013, 1306.0572.
[28] M. Buchkremer,et al. Model-independent framework for searches of top partners , 2013, 1305.4172.
[29] D. Soper,et al. Finding top quarks with shower deconstruction , 2012, 1211.3140.
[30] S. Forte,et al. Parton distributions with LHC data , 2012, 1207.1303.
[31] A. Wulzer,et al. Light top partners for a light composite Higgs , 2012, 1204.6333.
[32] M. Backovic,et al. Boosting the standard model Higgs signal with the Template Overlap Method , 2012, 1212.2977.
[33] Riccardo Rattazzi,et al. A first top partner hunter’s guide , 2012, 1211.5663.
[34] Yasuhiro Okada,et al. LHC signatures of vector-like quarks , 2012, 1207.5607.
[35] N. Vignaroli. Early discovery of top partners and test of the Higgs nature , 2012, 1207.0830.
[36] N. Vignaroli. Discovering the composite Higgs through the decay of a heavy fermion , 2012, 1204.0468.
[37] S. D. Ellis,et al. Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarksReport prepared by the participants of the BOOST 2011 Workshop at Princeton University, 22–26 May 2011. L Asquith (lasquith@hep.anl.gov), S Rappoccio (rappocc@fnal.gov) and C K Vermilion (verm@uw.edu), editors. , 2011, 1201.0008.
[38] Leandro G. Almeida,et al. Three-particle templates for a boosted Higgs boson , 2011, 1112.1957.
[39] R. Alon,et al. Structure of fat jets at the Tevatron and beyond , 2011, 1110.3684.
[40] J. Thaler,et al. Maximizing boosted top identification by minimizing N-subjettiness , 2011, 1108.2701.
[41] M. Jankowiak,et al. Jet dipolarity: top tagging with color flow , 2011, 1102.1012.
[42] Tilman Plehn,et al. Top Tagging , 2011, 1112.4441.
[43] M. Cacciari,et al. FastJet user manual , 2011, 1111.6097.
[44] R. Chivukula,et al. Patterns of Custodial Isospin Violation from a Composite Top , 2011, 1105.5437.
[45] M. Jankowiak,et al. Jet substructure without trees , 2011, 1104.1646.
[46] D. Soper,et al. Finding physics signals with shower deconstruction , 2011, 1102.3480.
[47] R. Alon,et al. Data-driven method of pile-up correction for the substructure of massive jets , 2011, 1101.3002.
[48] J. Thaler,et al. Identifying boosted objects with N-subjettiness , 2010, 1011.2268.
[49] S. D. Ellis,et al. Boosted objects: a probe of beyond the standard model physics , 2010, 1012.5412.
[50] A. Deandrea,et al. Bounds and decays of new heavy vector-like top partners , 2010, 1007.2933.
[51] K. Cranmer,et al. Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.
[52] Leandro G. Almeida,et al. Template Overlap Method for Massive Jets , 2010, 1006.2035.
[53] S. J. Lee,et al. The Hunt for New Physics at the Large Hadron Collider , 2010, 1001.2693.
[54] Lian-tao Wang,et al. Jet trimming , 2009, 0912.1342.
[55] S. D. Ellis,et al. Recombination algorithms and jet substructure: Pruning as a tool for heavy particle searches , 2009, 0912.0033.
[56] G. Salam. Towards jetography , 2009, 0906.1833.
[57] J. A. Aguilar-Saavedra,et al. Identifying top partners at LHC , 2009, 0907.3155.
[58] J. Virzi,et al. Substructure of High-pT Jets at the LHC , 2009 .
[59] David E Kaplan,et al. Top-Tagging: A Method for Identifying Boosted Hadronic Tops , 2008 .
[60] Lian-tao Wang,et al. Strategies to Identify Boosted Tops , 2008, 0806.0023.
[61] M. Cacciari,et al. The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.
[62] M. Serone,et al. Dark Matter and Electroweak Symmetry Breaking in Models with Warped Extra Dimensions , 2008, 0801.1645.
[63] P. Loch,et al. Jets in hadron–hadron collisions , 2007, 0712.2447.
[64] M. Cacciari,et al. Pileup subtraction using jet areas , 2007, 0707.1378.
[65] J. Butterworth,et al. Ju n 20 08 Jet substructure as a new Higgs search channel at the LHC , 2008 .
[66] R. Rattazzi,et al. The Strongly-Interacting Light Higgs , 2007, hep-ph/0703164.
[67] A. Pomarol,et al. Light custodians in natural composite Higgs models , 2006, hep-ph/0612048.
[68] M. Mangano,et al. Matching matrix elements and shower evolution for top-pair production in hadronic collisions , 2006, hep-ph/0611129.
[69] A. Pomarol,et al. A custodial symmetry for Zbb , 2006, hep-ph/0605341.
[70] A. Pomarol,et al. The Minimal Composite Higgs Model , 2004, hep-ph/0412089.
[71] Y. Hosotani,et al. Dynamical gauge-Higgs unification in the electroweak theory , 2004, hep-ph/0410193.
[72] C. Grojean,et al. Fermions on an interval: Quark and lepton masses without a Higgs , 2003, hep-ph/0310355.
[73] F. Maltoni,et al. MadEvent: Automatic event generation with MadGraph , 2002, hep-ph/0208156.
[74] A. Nelson,et al. The Minimal Moose for a Little Higgs , 2002, hep-ph/0206020.
[75] A. Nelson,et al. The Littlest Higgs , 2002, hep-ph/0206021.
[76] Enrico Fermi Institute,et al. Beautiful mirrors and precision electroweak data , 2001, hep-ph/0109097.
[77] M. Quirós,et al. Finite Higgs mass without supersymmetry , 2001, hep-th/0108005.
[78] Ignatios Antoniadis,et al. A Possible new dimension at a few TeV , 1990 .