Hazard Detection in the Sense of Traversability at Tsukuba Special Zones for Robotic Mobility

つくば市のモビリティロボット実験特区 [1]では,モビリティ ロボット(人が搭乗して移動するための機器)の社会受容性な どの評価を目的として,公道上で検証実験が進められている. 本研究は屋外環境で利用可能な距離画像センサを装備したモビ リティを前提として,モビリティユーザの安全確保を目的とし たユーザ支援技術の一つとして行われたものである.対象とす るモビリティとして立ち乗り型や車いす型などを含む広いクラ スを考える.この報告では電動車いすを使用するが,提案手法 は機種には依存しない.また特区での運用規則を前提にして議 論を進める.例えば運用では夜間・悪天時の利用と後退は非推 奨とされるので,モビリティの危険事象からスリップを除くこ と,モビリティ後方を観測するセンサはオプションと考えるこ と,など前提条件を明示する. この報告は特区歩道上の危険源(ハザード)の検出手法を述 べる.この報告ではロボット工学の文脈で定義可能で,モビリ ティ側で観測可能な危険源を対象と考える.歩道で想定される

[1]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[2]  Benjamin Kuipers,et al.  Detecting obstacles and drop-offs using stereo and motion cues for safe local motion , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  James S. Albus,et al.  Learning traversability models for autonomous mobile vehicles , 2008, Auton. Robots.

[4]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[5]  James M. Rehg,et al.  Traversability classification using unsupervised on-line visual learning for outdoor robot navigation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[6]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[7]  Nitesh V. Chawla,et al.  Editorial: special issue on learning from imbalanced data sets , 2004, SKDD.

[8]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[9]  Anthony Stentz,et al.  Online adaptive rough-terrain navigation vegetation , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[10]  Wolfram Burgard,et al.  Improving robot navigation in structured outdoor environments by identifying vegetation from laser data , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Robert C. Bolles,et al.  Mapping, navigation, and learning for off‐road traversal , 2009, J. Field Robotics.

[12]  Charles E. Thorpe,et al.  Vision-based neural network road and intersection detection and traversal , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[13]  Gert Cauwenberghs,et al.  Incremental and Decremental Support Vector Machine Learning , 2000, NIPS.

[14]  Yann LeCun,et al.  Off-Road Obstacle Avoidance through End-to-End Learning , 2005, NIPS.

[15]  Yann LeCun,et al.  Learning long‐range vision for autonomous off‐road driving , 2009, J. Field Robotics.

[16]  Edward Tunstel,et al.  Enhancing fuzzy robot navigation systems by mimicking human visual perception of natural terrain traversability , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[17]  Michael Happold,et al.  Enhancing Supervised Terrain Classification with Predictive Unsupervised Learning , 2006, Robotics: Science and Systems.