Membrane compartmentalisation of the ubiquitin system.

[1]  Guisheng Zhong,et al.  Ubiquitin ligase MARCH5 localizes to peroxisomes to regulate pexophagy , 2021, The Journal of cell biology.

[2]  E. Shoubridge,et al.  Author Correction: A proximity-dependent biotinylation map of a human cell , 2021, Nature.

[3]  John A. Tallarico,et al.  Deubiquitinase-Targeting Chimeras for Targeted Protein Stabilization , 2021, bioRxiv.

[4]  M. Mariappan,et al.  Deubiquitinases USP20/33 promote the biogenesis of tail-anchored membrane proteins , 2021, The Journal of cell biology.

[5]  S. Sengupta,et al.  MITOL-dependent ubiquitylation negatively regulates the entry of PolγA into mitochondria , 2021, PLoS biology.

[6]  S. Hatakeyama,et al.  Post‐translational Wnt receptor regulation: Is the fog slowly clearing? , 2021, BioEssays : news and reviews in molecular, cellular and developmental biology.

[7]  M. Gyrd-Hansen,et al.  The Met1-linked ubiquitin machinery in inflammation and infection , 2021, Cell Death & Differentiation.

[8]  J. Neefjes,et al.  The ER-embedded UBE2J1/RNF26 ubiquitylation complex exerts spatiotemporal control over the endolysosomal pathway. , 2021, Cell reports.

[9]  S. Takamori,et al.  Hidden proteome of synaptic vesicles in the mammalian brain , 2020, Proceedings of the National Academy of Sciences.

[10]  P. Zigrino,et al.  Inhibition of clathrin‐mediated endocytosis by knockdown of AP‐2 leads to alterations in the plasma membrane proteome , 2020, Traffic.

[11]  Jie Luo,et al.  Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis , 2020, Nature.

[12]  H. Colecraft,et al.  Targeted deubiquitination rescues distinct trafficking-deficient ion channelopathies , 2020, Nature Methods.

[13]  Steven Lin,et al.  Hsc70/Stub1 promotes the removal of individual oxidatively stressed peroxisomes , 2020, Nature Communications.

[14]  D. Komander,et al.  USP30 sets a trigger threshold for PINK1–PARKIN amplification of mitochondrial ubiquitylation , 2020, Life Science Alliance.

[15]  Georg H. H. Borner Organellar Maps Through Proteomic Profiling - A Conceptual Guide. , 2020, Molecular & cellular proteomics : MCP.

[16]  V. Hornung,et al.  Molecular mechanisms and cellular functions of cGAS–STING signalling , 2020, Nature Reviews Molecular Cell Biology.

[17]  E. Shoubridge,et al.  A high-density human mitochondrial proximity interaction network , 2020, bioRxiv.

[18]  R. Fischer,et al.  Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling , 2020, bioRxiv.

[19]  Walter W. Chen,et al.  A PEROXO-Tag Enables Rapid Isolation of Peroxisomes from Human Cells , 2020, bioRxiv.

[20]  J. Harper,et al.  Global Landscape and Dynamics of Parkin and USP30-Dependent Ubiquitylomes in iNeurons during Mitophagic Signaling , 2020, Molecular cell.

[21]  E. Verschueren,et al.  Dynamic Regulation of Mitochondrial Import by the Ubiquitin System. , 2020, Molecular cell.

[22]  D. Riedel,et al.  Hrd1 forms the retrotranslocation pore regulated by auto-ubiquitination and binding of misfolded proteins , 2020, Nature Cell Biology.

[23]  Lei Liu,et al.  MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex , 2020, Cell Death & Differentiation.

[24]  T. Maruyama,et al.  Ring finger protein 5 activates sterol regulatory element–binding protein 2 (SREBP2) to promote cholesterol biosynthesis via inducing polyubiquitination of SREBP chaperone SCAP , 2020, The Journal of Biological Chemistry.

[25]  C. Niehrs,et al.  The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer , 2020, eLife.

[26]  M. J. Clague,et al.  Data mining for traffic information , 2019, Traffic.

[27]  H. Kang,et al.  Dual targeting of RIG-I and MAVS by MARCH5 mitochondria ubiquitin ligase in innate immunity. , 2019, Cellular signalling.

[28]  R. Schüle,et al.  Bi-allelic variants in RNF170 are associated with hereditary spastic paraplegia , 2019, Nature Communications.

[29]  Aimin Liu Proteostasis in the Hedgehog signaling pathway. , 2019, Seminars in cell & developmental biology.

[30]  M. J. Clague,et al.  New aspects of USP30 biology in the regulation of pexophagy , 2019, Autophagy.

[31]  Anton Khmelinskii,et al.  Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins , 2019, eLife.

[32]  J. Mintern,et al.  MARCH ligases in immunity. , 2019, Current opinion in immunology.

[33]  S. Oeljeklaus,et al.  Mitochondrial protein translocation-associated degradation , 2019, Nature.

[34]  D. Komander,et al.  Breaking the chains: deubiquitylating enzyme specificity begets function , 2019, Nature Reviews Molecular Cell Biology.

[35]  Brian Raught,et al.  Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. , 2019, Current opinion in chemical biology.

[36]  N. Zelcer,et al.  Differential use of E2 ubiquitin conjugating enzymes for regulated degradation of the rate-limiting enzymes HMGCR and SQLE in cholesterol biosynthesis. , 2019, Atherosclerosis.

[37]  P. Kim,et al.  Deubiquitinating enzyme USP30 maintains basal peroxisome abundance by regulating pexophagy , 2019, The Journal of cell biology.

[38]  Oliver M. Crook,et al.  Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics , 2019, Nature Communications.

[39]  O. Frings,et al.  SubCellBarCode: Proteome-wide Mapping of Protein Localization and Relocalization. , 2019, Molecular cell.

[40]  M. Komada,et al.  The integral function of the endocytic recycling compartment is regulated by RFFL-mediated ubiquitylation of Rab11 effectors , 2019, Journal of Cell Science.

[41]  H. Shu,et al.  MARCH3 attenuates IL-1β–triggered inflammation by mediating K48-linked polyubiquitination and degradation of IL-1RI , 2018, Proceedings of the National Academy of Sciences.

[42]  D. Sabatini,et al.  MITO-Tag Mice enable rapid isolation and multimodal profiling of mitochondria from specific cell types in vivo , 2018, Proceedings of the National Academy of Sciences.

[43]  E. Papaleo,et al.  HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα , 2018, Nature Communications.

[44]  Weei-Chin Lin,et al.  RNF144A sustains EGFR signaling to promote EGF-dependent cell proliferation , 2018, The Journal of Biological Chemistry.

[45]  P. Lehner,et al.  The sterol-responsive RNF145 E3 ubiquitin ligase mediates the degradation of HMG-CoA reductase together with gp78 and Hrd1 , 2018, bioRxiv.

[46]  J. Goldstein,et al.  Retrospective on Cholesterol Homeostasis: The Central Role of Scap. , 2018, Annual review of biochemistry.

[47]  M. J. Clague,et al.  Dual role of USP30 in controlling basal pexophagy and mitophagy , 2018, EMBO reports.

[48]  D. Bicho,et al.  Peroxisomal monoubiquitinated PEX5 interacts with the AAA ATPases PEX1 and PEX6 and is unfolded during its dislocation into the cytosol , 2018, The Journal of Biological Chemistry.

[49]  W. Weissenhorn,et al.  CHMP1B is a target of USP8/UBPY regulated by ubiquitin during endocytosis , 2018, PLoS genetics.

[50]  Gregory A. Wyant,et al.  NUFIP1 is a ribosome receptor for starvation-induced ribophagy , 2018, Science.

[51]  G. Lukács,et al.  Chaperone-Independent Peripheral Quality Control of CFTR by RFFL E3 Ligase. , 2018, Developmental cell.

[52]  A. Prescott,et al.  Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand , 2018, Cell metabolism.

[53]  Jie Luo,et al.  Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase , 2018, The Journal of Biological Chemistry.

[54]  A. Whitworth,et al.  Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin , 2018, bioRxiv.

[55]  Gregory A. Wyant,et al.  Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes , 2017, Science.

[56]  G. Traver Hart,et al.  PICKLES: the database of pooled in-vitro CRISPR knockout library essentiality screens , 2017, Nucleic Acids Res..

[57]  D. Komander,et al.  Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling , 2017, Molecular cell.

[58]  P. Lehner,et al.  MARCH9‐mediated ubiquitination regulates MHC I export from the TGN , 2017, Immunology and cell biology.

[59]  J. P. Morth,et al.  Overview of the membrane-associated RING-CH (MARCH) E3 ligase family. , 2017, New biotechnology.

[60]  D. Komander,et al.  Mechanism and regulation of the Lys6-selective deubiquitinase USP30 , 2017, Nature Structural & Molecular Biology.

[61]  P. Tontonoz,et al.  Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP , 2017, eLife.

[62]  Wei Wang,et al.  TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import , 2017, The Journal of cell biology.

[63]  H. Shu,et al.  PKACs attenuate innate antiviral response by phosphorylating VISA and priming it for MARCH5-mediated degradation , 2017, PLoS pathogens.

[64]  T. Rapoport,et al.  Toward an understanding of the Cdc48/p97 ATPase , 2017, F1000Research.

[65]  Dongsheng Li,et al.  Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3 , 2017, Nature.

[66]  Ilya Bezprozvanny,et al.  Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. , 2017, Cell calcium.

[67]  S. Pastorino,et al.  BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation , 2017, Nature.

[68]  Devin P. Sullivan,et al.  A subcellular map of the human proteome , 2017, Science.

[69]  Q. Wang,et al.  The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response , 2017, PLoS pathogens.

[70]  A. Moser,et al.  The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders , 2017, Autophagy.

[71]  Nan Wang,et al.  Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome* , 2016, Molecular & Cellular Proteomics.

[72]  T. Rapoport,et al.  Autoubiquitination of the Hrd1 Ligase Triggers Protein Retrotranslocation in ERAD , 2016, Cell.

[73]  J. Cox,et al.  Global, quantitative and dynamic mapping of protein subcellular localization , 2016, eLife.

[74]  Kristoffer T G Rigbolt,et al.  Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking , 2016, Nature Structural &Molecular Biology.

[75]  Jun Peng,et al.  Mitochondrial E3 ubiquitin ligase 1: A key enzyme in regulation of mitochondrial dynamics and functions. , 2016, Mitochondrion.

[76]  E. Maspero,et al.  USP9X Controls EGFR Fate by Deubiquitinating the Endocytic Adaptor Eps15 , 2016, Current Biology.

[77]  H. McBride,et al.  MAPL SUMOylation of Drp1 Stabilizes an ER/Mitochondrial Platform Required for Cell Death. , 2015, Molecular cell.

[78]  X. Morelli,et al.  Structural Basis for the Interaction between the Golgi Reassembly-stacking Protein GRASP65 and the Golgi Matrix Protein GM130* , 2015, The Journal of Biological Chemistry.

[79]  L. Mei,et al.  VPS35 Deficiency or Mutation Causes Dopaminergic Neuronal Loss by Impairing Mitochondrial Fusion and Function. , 2015, Cell reports.

[80]  Joo-Yong Lee,et al.  HDAC6 maintains mitochondrial connectivity under hypoxic stress by suppressing MARCH5/MITOL dependent MFN2 degradation. , 2015, Biochemical and biophysical research communications.

[81]  T. Pandita,et al.  ATM Functions at the Peroxisome to Induce Pexophagy in Response to ROS , 2015, Nature Cell Biology.

[82]  Chul-Joong Kim,et al.  The mitochondrial ubiquitin ligase MARCH5 resolves MAVS aggregates during antiviral signalling , 2015, Nature Communications.

[83]  Kyung-Jin Cho,et al.  Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells , 2015, Proceedings of the National Academy of Sciences.

[84]  Claire Heride,et al.  The demographics of the ubiquitin system. , 2015, Trends in cell biology.

[85]  Mingyao Liu,et al.  The ubiquitination of rag A GTPase by RNF152 negatively regulates mTORC1 activation. , 2015, Molecular cell.

[86]  M. Weekes,et al.  Plasma Membrane Profiling Defines an Expanded Class of Cell Surface Proteins Selectively Targeted for Degradation by HCMV US2 in Cooperation with UL141 , 2015, PLoS pathogens.

[87]  A. Fukui,et al.  Molecular Role of RNF43 in Canonical and Noncanonical Wnt Signaling , 2015, Molecular and Cellular Biology.

[88]  Christine Yu,et al.  USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria , 2015, Nature Cell Biology.

[89]  R. Youle,et al.  The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson’s Disease , 2015, Neuron.

[90]  Senlin Li,et al.  The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. , 2014, Immunity.

[91]  Mark H. Ellisman,et al.  Directed evolution of APEX2 for electron microscopy and proteomics , 2014, Nature Methods.

[92]  Lin Guo,et al.  RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms , 2014, PLoS pathogens.

[93]  G. Dougan,et al.  TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I , 2014, Proceedings of the National Academy of Sciences.

[94]  Jina Yun,et al.  MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin , 2014, eLife.

[95]  Michael T. McManus,et al.  A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation , 2014, Nature Communications.

[96]  Zhijian J. Chen,et al.  The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. , 2014, Molecular cell.

[97]  R. Palmer,et al.  Tumour-associated mutations of PA-TM-RING ubiquitin ligases RNF167/RNF13 identify the PA domain as a determinant for endosomal localization. , 2014, The Biochemical journal.

[98]  M. Mann,et al.  Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells , 2014, Nature Methods.

[99]  N. Zelcer,et al.  The E3 Ubiquitin Ligase MARCH6 Degrades Squalene Monooxygenase and Affects 3-Hydroxy-3-Methyl-Glutaryl Coenzyme A Reductase and the Cholesterol Synthesis Pathway , 2014, Molecular and Cellular Biology.

[100]  W. Stoorvogel,et al.  MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. , 2013, Cold Spring Harbor perspectives in biology.

[101]  P. Roche,et al.  Internalizing MHC class II–peptide complexes are ubiquitinated in early endosomes and targeted for lysosomal degradation , 2013, Proceedings of the National Academy of Sciences.

[102]  E. El Khouri,et al.  RNF185 Is a Novel E3 Ligase of Endoplasmic Reticulum-associated Degradation (ERAD) That Targets Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)* , 2013, The Journal of Biological Chemistry.

[103]  Christer S. Ejsing,et al.  Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4 , 2013, eLife.

[104]  H. McBride,et al.  MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. , 2013, Molecular cell.

[105]  R. Palmer,et al.  Goliath family E3 ligases regulate the recycling endosome pathway via VAMP3 ubiquitylation , 2013, The EMBO journal.

[106]  Y. Jo,et al.  Ancient ubiquitous protein-1 mediates sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid droplet–associated endoplasmic reticulum membranes , 2013, Molecular biology of the cell.

[107]  Hyeseong Cho,et al.  Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5 , 2012, Cell Division.

[108]  R. Wojcikiewicz,et al.  Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system , 2012, Molecular biology of the cell.

[109]  I. Prior,et al.  Global snapshot of the influence of endocytosis upon EGF receptor signaling output. , 2012, Journal of proteome research.

[110]  Han Liu,et al.  Governance of endocytic trafficking and signaling by reversible ubiquitylation. , 2012, Developmental cell.

[111]  H. Shu,et al.  The E3 ubiquitin ligase MARCH8 negatively regulates IL-1β-induced NF-κB activation by targeting the IL1RAP coreceptor for ubiquitination and degradation , 2012, Proceedings of the National Academy of Sciences.

[112]  H. Clevers,et al.  Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors , 2012, Nature.

[113]  H. Ruffner,et al.  ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner , 2012, Nature.

[114]  Han Liu,et al.  Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome- and microtubule-associated functions , 2012, Molecular biology of the cell.

[115]  G. Mills,et al.  Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression , 2011, Oncogene.

[116]  Y. Jo,et al.  Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8 , 2011, Proceedings of the National Academy of Sciences.

[117]  J. Coulson,et al.  Isoform‐Specific Localization of the Deubiquitinase USP33 to the Golgi Apparatus , 2011, Traffic.

[118]  S. Ishido,et al.  Ubiquitination of CD86 Is a Key Mechanism in Regulating Antigen Presentation by Dendritic Cells , 2011, The Journal of Immunology.

[119]  H. Ploegh,et al.  Dual Role of Ancient Ubiquitous Protein 1 (AUP1) in Lipid Droplet Accumulation and Endoplasmic Reticulum (ER) Protein Quality Control , 2011, The Journal of Biological Chemistry.

[120]  W. Weissenhorn,et al.  Structural basis for ESCRT-III CHMP3 recruitment of AMSH. , 2011, Structure.

[121]  K. Okumoto,et al.  Cysteine Ubiquitination of PTS1 Receptor Pex5p Regulates Pex5p Recycling , 2011, Traffic.

[122]  R. Wojcikiewicz,et al.  RNF170 Protein, an Endoplasmic Reticulum Membrane Ubiquitin Ligase, Mediates Inositol 1,4,5-Trisphosphate Receptor Ubiquitination and Degradation* , 2011, The Journal of Biological Chemistry.

[123]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[124]  Yufei Shan,et al.  Mitochondrial Ubiquitin Ligase MARCH5 Promotes TLR7 Signaling by Attenuating TANK Action , 2011, PLoS pathogens.

[125]  S. Gygi,et al.  An OBSL1-Cul7Fbxw8 Ubiquitin Ligase Signaling Mechanism Regulates Golgi Morphology and Dendrite Patterning , 2011, PLoS biology.

[126]  Adam R. Johnson,et al.  Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7 , 2011, Nature.

[127]  Y. Jo,et al.  Membrane-associated Ubiquitin Ligase Complex Containing gp78 Mediates Sterol-accelerated Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase* , 2011, The Journal of Biological Chemistry.

[128]  P. Lehner,et al.  HRD1 and UBE2J1 target misfolded MHC class I heavy chains for endoplasmic reticulum-associated degradation , 2011, Proceedings of the National Academy of Sciences.

[129]  A. Erickson PA‐TM‐RING proteins: a new family of endosomal membrane proteins , 2011, The FEBS Journal.

[130]  S. Gygi,et al.  SCFFbw7 Regulates Cellular Apoptosis By Targeting Mcl-1 for Ubiquitination and Destruction , 2010, Nature.

[131]  C. Thiele,et al.  Ancient Ubiquitous Protein 1 (AUP1) Localizes to Lipid Droplets and Binds the E2 Ubiquitin Conjugase G2 (Ube2g2) via Its G2 Binding Region*♦ , 2010, The Journal of Biological Chemistry.

[132]  K. Früh,et al.  Membrane-Associated RING-CH Proteins Associate with Bap31 and Target CD81 and CD44 to Lysosomes , 2010, PloS one.

[133]  Tom A. Rapoport,et al.  Retrotranslocation of a Misfolded Luminal ER Protein by the Ubiquitin-Ligase Hrd1p , 2010, Cell.

[134]  Martin Mehnert,et al.  ERAD ubiquitin ligases , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[135]  Jason C. Young,et al.  Peripheral Protein Quality Control Removes Unfolded CFTR from the Plasma Membrane , 2010, Science.

[136]  R. Youle,et al.  Outer mitochondrial membrane protein degradation by the proteasome. , 2010, Novartis Foundation symposium.

[137]  R. Youle,et al.  IBRDC2, an IBR‐type E3 ubiquitin ligase, is a regulatory factor for Bax and apoptosis activation , 2010, The EMBO journal.

[138]  E. Wiertz,et al.  Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates , 2009, The Journal of cell biology.

[139]  Mair E. M. Thomas,et al.  The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER , 2009, The Journal of cell biology.

[140]  K. Lindsten,et al.  The ER‐resident ubiquitin‐specific protease 19 participates in the UPR and rescues ERAD substrates , 2009, EMBO reports.

[141]  H. McBride,et al.  MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission , 2009, EMBO reports.

[142]  V. Venkataramanan,et al.  The deubiquitinases USP33 and USP20 coordinate β2 adrenergic receptor recycling and resensitization , 2009, The EMBO journal.

[143]  P. Lehner,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture and Differential Plasma Membrane Proteome Quantitation Identify New Substrates for the MARCH9 Transmembrane E3 Ligase , 2009, Molecular & Cellular Proteomics.

[144]  M. J. Clague,et al.  Phosphoinositides and the endocytic pathway. , 2009, Experimental cell research.

[145]  J. Bomberger,et al.  The Deubiquitinating Enzyme USP10 Regulates the Post-endocytic Sorting of Cystic Fibrosis Transmembrane Conductance Regulator in Airway Epithelial Cells* , 2009, The Journal of Biological Chemistry.

[146]  A. Erickson,et al.  The PA‐TM‐RING protein RING finger protein 13 is an endosomal integral membrane E3 ubiquitin ligase whose RING finger domain is released to the cytoplasm by proteolysis , 2009, The FEBS Journal.

[147]  Y. Li,et al.  The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. , 2009, Immunity.

[148]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[149]  Jennifer Lippincott-Schwartz,et al.  Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes , 2008, Proceedings of the National Academy of Sciences.

[150]  Gordon B. Mills,et al.  Derailed endocytosis: an emerging feature of cancer , 2008, Nature Reviews Cancer.

[151]  C. Fathman,et al.  The Single Subunit Transmembrane E3 Ligase Gene Related to Anergy in Lymphocytes (GRAIL) Captures and Then Ubiquitinates Transmembrane Proteins across the Cell Membrane* , 2008, Journal of Biological Chemistry.

[152]  G. Barber,et al.  STING an Endoplasmic Reticulum Adaptor that Facilitates Innate Immune Signaling , 2008, Nature.

[153]  A. Weissman,et al.  Nedd4 Mediates Agonist-dependent Ubiquitination, Lysosomal Targeting, and Degradation of the β2-Adrenergic Receptor* , 2008, Journal of Biological Chemistry.

[154]  C. Fathman,et al.  Cutting Edge: The Transmembrane E3 Ligase GRAIL Ubiquitinates the Costimulatory Molecule CD40 Ligand during the Induction of T Cell Anergy1 , 2008, The Journal of Immunology.

[155]  B. Warscheid,et al.  Members of the E2D (UbcH5) Family Mediate the Ubiquitination of the Conserved Cysteine of Pex5p, the Peroxisomal Import Receptor* , 2008, Journal of Biological Chemistry.

[156]  N. Nakamura,et al.  Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. , 2008, Molecular biology of the cell.

[157]  M. Lussier,et al.  RNF24, a new TRPC interacting protein, causes the intracellular retention of TRPC. , 2008, Cell calcium.

[158]  Aipo Diao,et al.  ZFPL1, a novel ring finger protein required for cis‐Golgi integrity and efficient ER‐to‐Golgi transport , 2008, The EMBO journal.

[159]  Keiji Tanaka,et al.  Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. , 2008, Molecular biology of the cell.

[160]  Miguel A. Andrade-Navarro,et al.  Cargo-Selected Transport from the Mitochondria to Peroxisomes Is Mediated by Vesicular Carriers , 2008, Current Biology.

[161]  Han Liu,et al.  The MIT Domain of UBPY Constitutes a CHMP Binding and Endosomal Localization Signal Required for Efficient Epidermal Growth Factor Receptor Degradation* , 2007, Journal of Biological Chemistry.

[162]  M. van den Berg,et al.  A Conserved Cysteine Is Essential for Pex4p-dependent Ubiquitination of the Peroxisomal Import Receptor Pex5p* , 2007, Journal of Biological Chemistry.

[163]  R. Youle,et al.  The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division , 2007, The Journal of cell biology.

[164]  Roger L. Williams,et al.  The emerging shape of the ESCRT machinery , 2007, Nature Reviews Molecular Cell Biology.

[165]  Harald W. Platta,et al.  Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling , 2007, The Journal of cell biology.

[166]  P. Lehner,et al.  MARCH‐IX mediates ubiquitination and downregulation of ICAM‐1 , 2007, FEBS letters.

[167]  Joon-No Lee,et al.  Sterol-regulated Degradation of Insig-1 Mediated by the Membrane-bound Ubiquitin Ligase gp78* , 2006, Journal of Biological Chemistry.

[168]  K. Lilley,et al.  Comparative proteomics of clathrin-coated vesicles , 2006, The Journal of cell biology.

[169]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[170]  M. J. Clague,et al.  Endocytosis: the DUB version. , 2006, Trends in cell biology.

[171]  Amanda Thompson,et al.  A systematic analysis of human CHMP protein interactions: additional MIT domain-containing proteins bind to multiple components of the human ESCRT III complex. , 2006, Genomics.

[172]  K. Sada,et al.  A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics , 2006, The EMBO journal.

[173]  N. Nakamura,et al.  MARCH‐V is a novel mitofusin 2‐ and Drp1‐binding protein able to change mitochondrial morphology , 2006, EMBO reports.

[174]  Tom A. Rapoport,et al.  Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins , 2006, Cell.

[175]  J. Rommens,et al.  Human Homologs of Ubc6p Ubiquitin-conjugating Enzyme and Phosphorylation of HsUbc6e in Response to Endoplasmic Reticulum Stress* , 2006, Journal of Biological Chemistry.

[176]  I. Prior,et al.  The Ubiquitin Isopeptidase UBPY Regulates Endosomal Ubiquitin Dynamics and Is Essential for Receptor Down-regulation* , 2006, Journal of Biological Chemistry.

[177]  R. Beynon,et al.  Activation of the Endosome-Associated Ubiquitin Isopeptidase AMSH by STAM, a Component of the Multivesicular Body-Sorting Machinery , 2006, Current Biology.

[178]  Jian Wang,et al.  Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3. , 2005, Molecular endocrinology.

[179]  Zhijian J. Chen,et al.  Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3 , 2005, Cell.

[180]  Xiaodong Wang,et al.  Mule/ARF-BP1, a BH3-Only E3 Ubiquitin Ligase, Catalyzes the Polyubiquitination of Mcl-1 and Regulates Apoptosis , 2005, Cell.

[181]  Lin Chen,et al.  Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. , 2005, Genes & development.

[182]  G. Cottrell,et al.  c-Cbl Mediates Ubiquitination, Degradation, and Down-regulation of Human Protease-activated Receptor 2* , 2005, Journal of Biological Chemistry.

[183]  P. Baldacci,et al.  Over-expression of Rififylin, a new RING finger and FYVE-like domain-containing protein, inhibits recycling from the endocytic recycling compartment. , 2004, Molecular biology of the cell.

[184]  J. McCullough,et al.  AMSH is an endosome-associated ubiquitin isopeptidase , 2004, The Journal of cell biology.

[185]  D. Ng,et al.  Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control , 2004, The Journal of cell biology.

[186]  B. Papsin,et al.  Misfolding diverts CFTR from recycling to degradation , 2004, The Journal of cell biology.

[187]  K. Früh,et al.  Downregulation of Major Histocompatibility Complex Class I by Human Ubiquitin Ligases Related to Viral Immune Evasion Proteins , 2004, Journal of Virology.

[188]  V. Chau,et al.  Human HRD1 Is an E3 Ubiquitin Ligase Involved in Degradation of Proteins from the Endoplasmic Reticulum* , 2004, Journal of Biological Chemistry.

[189]  J. Stankova,et al.  Trafficking, Ubiquitination, and Down-regulation of the Human Platelet-activating Factor Receptor* , 2003, Journal of Biological Chemistry.

[190]  J. Benovic,et al.  The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. , 2003, Developmental cell.

[191]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[192]  Rick A. Rogers,et al.  Cbl-mediated Ubiquitinylation Is Required for Lysosomal Sorting of Epidermal Growth Factor Receptor but Is Dispensable for Endocytosis* , 2003, Journal of Biological Chemistry.

[193]  J. Harney,et al.  Deubiquitination of type 2 iodothyronine deiodinase by von Hippel-Lindau protein-interacting deubiquitinating enzymes regulates thyroid hormone activation. , 2003, The Journal of clinical investigation.

[194]  Morag Park,et al.  Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. , 2003, Cancer cell.

[195]  C. Fathman,et al.  GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. , 2003, Immunity.

[196]  J. Bonifacino,et al.  Enthoprotin , 2002, Journal of Cell Biology.

[197]  E. Hartmann,et al.  A role for mammalian Ubc6 homologues in ER-associated protein degradation. , 2002, Journal of cell science.

[198]  I. Madshus,et al.  Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes , 2002, Nature Cell Biology.

[199]  J. Klumperman,et al.  Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. , 2002, Molecular biology of the cell.

[200]  J. Benovic,et al.  Agonist-promoted Ubiquitination of the G Protein-coupled Receptor CXCR4 Mediates Lysosomal Sorting* , 2001, The Journal of Biological Chemistry.

[201]  H. Band,et al.  Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. , 2001, Molecular cell.

[202]  M. Hochstrasser,et al.  A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. , 2001, Genes & development.

[203]  T. Kohout,et al.  Regulation of Receptor Fate by Ubiquitination of Activated β2-Adrenergic Receptor and β-Arrestin , 2001, Science.

[204]  L. Hicke A New Ticket for Entry into Budding Vesicles—Ubiquitin , 2001, Cell.

[205]  Y. Yarden,et al.  Cbl-b-dependent Coordinated Degradation of the Epidermal Growth Factor Receptor Signaling Complex* , 2001, The Journal of Biological Chemistry.

[206]  K. Hofmann,et al.  The protease-associated domain: a homology domain associated with multiple classes of proteases. , 2001, Trends in biochemical sciences.

[207]  N. Kitamura,et al.  Endosomal Localization and Receptor Dynamics Determine Tyrosine Phosphorylation of Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate , 2000, Molecular and Cellular Biology.

[208]  M. Lindsay,et al.  Localization of phosphatidylinositol 3‐phosphate in yeast and mammalian cells , 2000, The EMBO journal.

[209]  S. Rosengren,et al.  Gene encoding a new RING-B-box-Coiled-coil protein is mutated in mulibrey nanism , 2000, Nature Genetics.

[210]  Julie A. Pitcher,et al.  The Role of Sequestration in G Protein-coupled Receptor Resensitization , 1997, The Journal of Biological Chemistry.

[211]  M. Zerial,et al.  Rab11 regulates recycling through the pericentriolar recycling endosome , 1996, The Journal of cell biology.

[212]  D. Wolf,et al.  ER Degradation of a Misfolded Luminal Protein by the Cytosolic Ubiquitin-Proteasome Pathway , 1996, Science.

[213]  C. Futter,et al.  Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes , 1996, The Journal of cell biology.

[214]  Michael J. Berridge,et al.  Inositol trisphosphate, a novel second messenger in cellular signal transduction , 1984, Nature.

[215]  Björn Schnute,et al.  Endocytic Trafficking of the Notch Receptor. , 2018, Advances in experimental medicine and biology.

[216]  D. Hammond,et al.  Met receptor dynamics and signalling. , 2004, Current topics in microbiology and immunology.

[217]  C. Joazeiro,et al.  Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation , 2000, Nature Cell Biology.

[218]  R. Plemper,et al.  Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. , 1998, Molecular biology of the cell.

[219]  C. de Duve The separation and characterization of subcellular particles. , 1965, Harvey lectures.

[220]  C. Duve Principles of Tissue Fractionation , 1964 .