Spectral Effects of Discrete-Time Amplitude Levels in Digital-Intensive Wideband Radio Transmitters

This paper examines one source of spectral degradation in polar and multilevel outphasing transmitters. The degradation is caused by the amplitude signal appearing at the transmitter output as a baseband component, in addition to the desired RF signal. This baseband component contains sampling images and quantization noise across the spectrum. Thus, it adds noise at the signal band where it cannot be filtered and limits the achievable ACLR, particularly in wideband LTE and 5G systems. We analyze the origin of this phenomenon and related effects of system and signal parameters, and propose three design solutions for eliminating or alleviating the problem. Our analysis and simulations demonstrate that using a voltage-subtracting power combiner cancels the described degradation, potentially leading to significant improvement in spectral performance.

[1]  Yorgos Palaskas,et al.  A Flip-Chip-Packaged 25.3 dBm Class-D Outphasing Power Amplifier in 32 nm CMOS for WLAN Application , 2011, IEEE Journal of Solid-State Circuits.

[2]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[3]  Mikko Valkama,et al.  Class D CMOS power amplifier with on/off logic for a multilevel outphasing transmitter , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[4]  Mikko Valkama,et al.  Digital Interpolating Phase Modulator for Wideband Outphasing Transmitters , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Hyung Seok Kim,et al.  13.6 A 2.4GHz WLAN digital polar transmitter with synthesized digital-to-time converter in 14nm trigate/FinFET technology for IoT and wearable applications , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[6]  Sriram Muralidharan,et al.  A Compact Low Loss Single-Ended to Two-Way Differential Power Divider/Combiner , 2015, IEEE Microwave and Wireless Components Letters.

[7]  Mikko Valkama,et al.  13.5 A 0.35-to-2.6GHz multilevel outphasing transmitter with a digital interpolating phase modulator enabling up to 400MHz instantaneous bandwidth , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[8]  Joy Laskar,et al.  A Multilevel Class-D CMOS Power Amplifier for an Out-Phasing Transmitter With a Nonisolated Power Combiner , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[9]  Baoyong Chi,et al.  A W-Band Power Amplifier Utilizing a Miniaturized Marchand Balun Combiner , 2015, IEEE Transactions on Microwave Theory and Techniques.

[10]  Harald Pretl,et al.  13.2 A digital multimode polar transmitter supporting 40MHz LTE Carrier Aggregation in 28nm CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[11]  K. Muhammad,et al.  All-digital PLL and transmitter for mobile phones , 2005, IEEE Journal of Solid-State Circuits.

[12]  Xin-Yu Shih,et al.  A 0.27mm2 13.5dBm 2.4GHz all-digital polar transmitter using 34%-efficiency Class-D DPA in 40nm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[13]  Yorgos Palaskas,et al.  A 2.4-GHz 20–40-MHz Channel WLAN Digital Outphasing Transmitter Utilizing a Delay-Based Wideband Phase Modulator in 32-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[14]  Mark P. van der Heijden,et al.  A 19W high-efficiency wide-band CMOS-GaN class-E Chireix RF outphasing power amplifier , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[15]  Yorgos Palaskas,et al.  A Transformer-Combined 31.5 dBm Outphasing Power Amplifier in 45 nm LP CMOS With Dynamic Power Control for Back-Off Power Efficiency Enhancement , 2012, IEEE Journal of Solid-State Circuits.

[16]  Qiuyao Zhu,et al.  A Digital Polar Transmitter With DC–DC Converter Supporting 256-QAM WLAN and 40-MHz LTE-A Carrier Aggregation , 2016, IEEE Journal of Solid-State Circuits.

[17]  F. Murden,et al.  A polar modulator transmitter for GSM/EDGE , 2004, IEEE Journal of Solid-State Circuits.

[18]  An-Yeu Wu,et al.  Multilevel LINC System Designs for Power Efficiency Enhancement of Transmitters , 2009, IEEE Journal of Selected Topics in Signal Processing.

[19]  SungWon Chung,et al.  A 2.4-GHz, 27-dBm Asymmetric Multilevel Outphasing Power Amplifier in 65-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[20]  Christian C. Enz,et al.  A 2.4-GHz low complexity polar transmitter using dynamic biasing for IEEE 802.15.6 , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[21]  Mark J. W. Rodwell,et al.  Millimeter-Wave Series Power Combining Using Sub-Quarter-Wavelength Baluns , 2014, IEEE Journal of Solid-State Circuits.

[22]  Anh-Vu Pham,et al.  Wide-Bandwidth Power-Combining and Inverse Class-F GaN Power Amplifier at X-Band , 2013, IEEE Transactions on Microwave Theory and Techniques.

[23]  Changkun Park,et al.  A CMOS RF Power Amplifier Using an Off-Chip Transmision Line Transformer With 62% PAE , 2007, IEEE Microwave and Wireless Components Letters.