Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells
暂无分享,去创建一个
Yuri Bazilevs | Kjell Magne Mathisen | Trond Kvamsdal | Xiaowei Deng | S. B. Raknes | David J. Benson | Xiaowei Deng | Y. Bazilevs | D. Benson | T. Kvamsdal | K. Mathisen | Siv Bente Raknes
[1] Alessandro Reali,et al. Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .
[2] E. Grinspun,et al. Discrete elastic rods , 2008, SIGGRAPH 2008.
[3] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[4] R. Echter,et al. A hierarchic family of isogeometric shell finite elements , 2013 .
[5] Jia Lu,et al. Cylindrical element: Isogeometric model of continuum rod , 2011 .
[6] Yuri Bazilevs,et al. 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .
[7] Yuri Bazilevs,et al. Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .
[8] J. Z. Zhu,et al. The finite element method , 1977 .
[9] Eugenio Oñate,et al. Advances in the formulation of the rotation-free basic shell triangle , 2005 .
[10] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[11] T. Hughes,et al. Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .
[12] Thomas J. R. Hughes,et al. Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .
[13] Roland Wüchner,et al. Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .
[14] Thomas J. R. Hughes,et al. Blended isogeometric shells , 2013 .
[15] T. Belytschko,et al. X‐FEM in isogeometric analysis for linear fracture mechanics , 2011 .
[16] Jose Manuel Valverde,et al. Invariant Hermitian finite elements for thin Kirchhoff rods. I: The linear plane case ☆ , 2012 .
[17] Jose Manuel Valverde,et al. Invariant Hermitian finite elements for thin Kirchhoff rods. II: The linear three-dimensional case , 2012 .
[18] A. Kwan. A new approach to geometric nonlinearity of cable structures , 1998 .
[19] T. Hughes,et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .
[20] R. L. Taylor. Isogeometric analysis of nearly incompressible solids , 2011 .
[21] Cv Clemens Verhoosel,et al. A phase-field description of dynamic brittle fracture , 2012 .
[22] John A. Evans,et al. Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .
[23] Yuri Bazilevs,et al. The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .
[24] Pere Roca,et al. A new deformable catenary element for the analysis of cable net structures , 2006 .
[25] Yuri Bazilevs,et al. Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .
[26] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[27] I. Temizer,et al. A mixed formulation of mortar-based frictionless contact , 2012 .
[28] T. Hughes,et al. B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .
[29] W. J. Lewis,et al. Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs , 1984 .
[30] Jintai Chung,et al. A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .
[31] Bernhard A. Schrefler,et al. A total lagrangian geometrically non-linear analysis of combined beam and cable structures , 1983 .
[32] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[33] Peter Wriggers,et al. A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .
[34] Alain Combescure,et al. Locking free isogeometric formulations of curved thick beams , 2012 .
[35] T. Belytschko,et al. A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .
[36] Manfred Bischoff,et al. Numerical efficiency, locking and unlocking of NURBS finite elements , 2010 .
[37] Thomas J. R. Hughes,et al. A large deformation, rotation-free, isogeometric shell , 2011 .
[38] Peter Wriggers,et al. Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .
[39] F. Auricchio,et al. The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .