TWIK-1 contributes to the intrinsic excitability of dentate granule cells in mouse hippocampus

[1]  Eunju Kim,et al.  A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes , 2014, Nature Communications.

[2]  Kenji Kohno,et al.  Hilar Mossy Cell Degeneration Causes Transient Dentate Granule Cell Hyperexcitability and Impaired Pattern Separation , 2012, Neuron.

[3]  J. Marks,et al.  SUMOylation Silences Heterodimeric TASK Potassium Channels Containing K2P1 Subunits in Cerebellar Granule Neurons , 2012, Science Signaling.

[4]  J. Wolfart,et al.  Adaptive intrinsic plasticity in human dentate gyrus granule cells during temporal lobe epilepsy. , 2012, Cerebral cortex.

[5]  D. Douguet,et al.  TWIK1, a unique background channel with variable ion selectivity , 2012, Proceedings of the National Academy of Sciences.

[6]  Haijun Chen,et al.  TWIK-1 Two-Pore Domain Potassium Channels Change Ion Selectivity and Conduct Inward Leak Sodium Currents in Hypokalemia , 2011, Science Signaling.

[7]  J. Marks,et al.  One SUMO is sufficient to silence the dimeric potassium channel K2P1 , 2010, Proceedings of the National Academy of Sciences.

[8]  Péter Enyedi,et al.  Molecular Background of Leak K (cid:1) Currents: Two-Pore Domain Potassium Channels , 2010 .

[9]  R. Cuppini,et al.  FGF2 modulates the voltage-dependent K+ current and changes excitability of rat dentate gyrus granule cells , 2009, Neuroscience Letters.

[10]  J. Bischofberger,et al.  Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy , 2009, The Journal of physiology.

[11]  A. F. Schinder,et al.  Reliable Activation of Immature Neurons in the Adult Hippocampus , 2009, PloS one.

[12]  J. Zentner,et al.  Increased leak conductance in dentate gyrus granule cells of temporal lobe epilepsy patients with Ammon’s horn sclerosis , 2009, Epilepsia.

[13]  W. Wisden,et al.  Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice , 2008, Neuroscience.

[14]  W. Wisden,et al.  TASK-3 Two-Pore Domain Potassium Channels Enable Sustained High-Frequency Firing in Cerebellar Granule Neurons , 2007, The Journal of Neuroscience.

[15]  P. Deng,et al.  Serotonin Inhibits Neuronal Excitability by Activating Two-Pore Domain K+ Channels in the Entorhinal Cortex , 2007, Molecular Pharmacology.

[16]  B. Bean The action potential in mammalian central neurons , 2007, Nature Reviews Neuroscience.

[17]  David Hsu,et al.  The dentate gyrus as a filter or gate: a look back and a look ahead. , 2007, Progress in brain research.

[18]  J. Barhanin,et al.  Expression and insights on function of potassium channel TWIK-1 in mouse kidney , 2005, Pflügers Archiv.

[19]  S. Goldstein,et al.  K2P channels and their protein partners , 2005, Current Opinion in Neurobiology.

[20]  M. Butler,et al.  Sumoylation Silences the Plasma Membrane Leak K+ Channel K2P1 , 2005, Cell.

[21]  I. Módy Aspects of the homeostaic plasticity of GABAA receptor‐mediated inhibition , 2005, The Journal of physiology.

[22]  Bernardo Rudy,et al.  A Unique Role for Kv3 Voltage-Gated Potassium Channels in Starburst Amacrine Cell Signaling in Mouse Retina , 2004, The Journal of Neuroscience.

[23]  D. Coulter,et al.  Dentate granule cell GABAA receptors in epileptic hippocampus: enhanced synaptic efficacy and altered pharmacology , 2003, The European journal of neuroscience.

[24]  C. Elger,et al.  Functional and molecular analysis of transient voltage‐dependent K+ currents in rat hippocampal granule cells , 2001, The Journal of physiology.

[25]  D. Bayliss,et al.  CNS Distribution of Members of the Two-Pore-Domain (KCNK) Potassium Channel Family , 2001, The Journal of Neuroscience.

[26]  E. Honoré,et al.  Properties and modulation of mammalian 2P domain K+ channels , 2001, Trends in Neurosciences.

[27]  Detlef Bockenhauer,et al.  Potassium leak channels and the KCNK family of two-p-domain subunits , 2001, Nature Reviews Neuroscience.

[28]  William Wisden,et al.  Adaptive regulation of neuronal excitability by a voltage- independent potassium conductance , 2001, Nature.

[29]  M. Lazdunski,et al.  The structure, function and distribution of the mouse TWIK‐1 K+ channel , 1997, FEBS letters.

[30]  M. Lazdunski,et al.  TWIK‐1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. , 1996, The EMBO journal.

[31]  G. Shepherd,et al.  Comparison between the membrane and synaptic properties of human and rodent dentate granule cells , 1993, Brain Research.

[32]  K J Staley,et al.  Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. , 1992, Journal of neurophysiology.