A monotone nonlinear finite volume method for advection–diffusion equations on unstructured polyhedral meshes in 3D

Abstract We present a new monotone finite volume method for the advection–diffusion equation with a full anisotropic discontinuous diffusion tensor and a discontinuous advection field on 3D conformal polyhedral meshes. The proposed method is based on a nonlinear flux approximation both for diffusive and advective fluxes and guarantees solution non-negativity. The approximation of the diffusive flux uses the nonlinear two-point stencil described in [Danilov and Vassilevski, Russ. Numer. Anal. Math. Modelling 24: 207–227, 2009]. Approximation of the advective flux is based on the second-order upwind method with a specially designed minimal nonlinear correction [Lipnikov, Svyatskiy, and Vassilevski, J. Comp. Phys. 229: 4017–4032, 2010]. The second-order convergence rate and monotonicity are verified with numerical experiments.

[1]  ShakibFarzin,et al.  A new finite element formulation for computational fluid dynamics , 1991 .

[2]  Ivar Aavatsmark,et al.  Monotonicity of control volume methods , 2007, Numerische Mathematik.

[3]  Zhiqiang Sheng,et al.  Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..

[4]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[5]  Y. Vassilevski,et al.  Two splitting schemes for nonstationary convection-diffusion problems on tetrahedral meshes , 2008 .

[6]  Christophe Le Potier,et al.  Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés , 2005 .

[7]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part II – Analysis for P1 and Q1 finite elements , 2008 .

[8]  Dmitri Kuzmin,et al.  On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection , 2006, J. Comput. Phys..

[9]  H. Roos,et al.  A UNIFORMLY ACCURATE FINITE VOLUME DISCRETIZATION FOR A CONVECTION-DIFFUSION PROBLEM , 2022 .

[10]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[11]  Daniil Svyatskiy,et al.  Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..

[12]  Matthew E. Hubbard,et al.  Regular Article: Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids , 1999 .

[13]  Sadok Lamine,et al.  Higher-resolution convection schemes for flow in porous media on highly distorted unstructured grids , 2008 .

[14]  Daniil Svyatskiy,et al.  Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes , 2007, J. Comput. Phys..

[15]  Enrico Bertolazzi,et al.  A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems , 2005, SIAM J. Numer. Anal..

[16]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[17]  Sergey Korotov,et al.  Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle , 2001, Math. Comput..

[18]  E. Bertolazzi,et al.  A CELL-CENTERED SECOND-ORDER ACCURATE FINITE VOLUME METHOD FOR CONVECTION–DIFFUSION PROBLEMS ON UNSTRUCTURED MESHES , 2004 .

[19]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[20]  Richard Liska,et al.  Enforcing the Discrete Maximum Principle for Linear Finite Element Solutions of Second-Order Elliptic Problems , 2007 .

[21]  Bradley T. Mallison,et al.  A compact multipoint flux approximation method with improved robustness , 2008 .

[22]  Albert J. Valocchi,et al.  Non-negative mixed finite element formulations for a tensorial diffusion equation , 2008, J. Comput. Phys..

[23]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[24]  I. V. Kapyrin A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes , 2007 .

[25]  David J. Benson,et al.  A new two-dimensional flux-limited shock viscosity for impact calculations , 1991 .

[26]  Daniil Svyatskiy,et al.  A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems , 2009, J. Comput. Phys..

[27]  Gianmarco Manzini,et al.  A finite volume method for advection-diffusion problems in convection-dominated regimes , 2008 .

[28]  G. Chavent Mathematical models and finite elements for reservoir simulation , 1986 .

[29]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[30]  D. Kuzmin,et al.  Algebraic Flux Correction II , 2012 .

[31]  Dirk Wollstein A UNIFORMLY ACCURATE FINITE VOLUME DISCRETIZATION FOR A CONVECTION-DIFFUSION PROBLEM , 2002 .

[32]  Alexandre Ern,et al.  Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .

[33]  Yu. V. Vassilevski,et al.  A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes , 2009 .

[34]  Daniil Svyatskiy,et al.  A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes , 2010, J. Comput. Phys..

[35]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review , 2007 .

[36]  Danping Yang,et al.  An upwind finite‐volume element scheme and its maximum‐principle‐preserving property for nonlinear convection–diffusion problem , 2008 .

[37]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[38]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[39]  Dmitri Kuzmin,et al.  Algebraic Flux Correction I. Scalar Conservation Laws , 2005 .