Perturbation theory and backward error forAX−XB=C
暂无分享,去创建一个
[1] N. Higham. Computing real square roots of a real matrix , 1987 .
[2] N. Higham,et al. Stability of methods for matrix inversion , 1992 .
[3] G. Hewer,et al. The sensitivity of the stable Lyapunov equation , 1987, 26th IEEE Conference on Decision and Control.
[4] Nicholas J. Higham,et al. FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation , 1988, TOMS.
[5] S. R. Searle,et al. The Vec-Permutation Matrix, the Vec Operator and Kronecker Products: A Review , 1981 .
[6] S. Hammarling,et al. On a Direct Algorithm for Computing Invariant Subspaces With. . . , 1991 .
[7] Karabi Datta,et al. The matrix equation XA − BX = R and its applications , 1988 .
[8] R. Byers. A LINPACK-style condition estimator for the equation AX-XB^{T} = C , 1984 .
[9] J. Varah. On the Separation of Two Matrices , 1979 .
[10] J. L. Rigal,et al. On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.
[11] Dianne P. O'Leary,et al. Constrained Matrix Sylvester Equations , 1992, SIAM J. Matrix Anal. Appl..
[12] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[13] L. Reichel,et al. Krylov-subspace methods for the Sylvester equation , 1992 .
[14] E. Wachspress. Iterative solution of the Lyapunov matrix equation , 1988 .
[15] G. Stewart. Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .
[16] Nicholas J. Higham,et al. Experience with a Matrix Norm Estimator , 1990, SIAM J. Sci. Comput..
[17] R. Skeel. Iterative refinement implies numerical stability for Gaussian elimination , 1980 .
[18] G. Golub,et al. A Hessenberg-Schur method for the problem AX + XB= C , 1979 .
[19] Bo Kågström,et al. Distributed and Shared Memory Block Algorithms for the Triangular Sylvester Equation with øperatornamesep - 1 Estimators , 1992, SIAM J. Matrix Anal. Appl..
[20] N. Higham,et al. Componentwise perturbation theory for linear systems with multiple right-hand sides , 1992 .
[21] Richard H. Bartels,et al. Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.
[22] J. Hearon,et al. Nonsingular solutions of TA−BT=C , 1977 .
[23] Nicholas J. Higham,et al. Backward Error and Condition of Structured Linear Systems , 1992, SIAM J. Matrix Anal. Appl..
[24] W. Niethammer,et al. SOR for AX−XB=C , 1991 .