A 86 MHz–12 GHz Digital-Intensive PLL for Software-Defined Radios, Using a 6 fJ/Step TDC in 40 nm Digital CMOS

A 86 MHz-12 GHz digital-intensive reconfigurable PLL frequency synthesizer is presented with 100 kHz to 2 MHz bandwidth. It leverages a 6 fJ/step 5.5 ps, 14b coarse-fine TDC and a 6-12 GHz dual-VCO set. Several simple calibration schemes are proposed that enable the proper performance of the highly efficient TDC in the PLL. The 0.28 mm2 synthesizer, which is appropriate for use in a Software-Defined Radio, features noise cancellation and digital phase modulation and consumes less than 30 mW.

[1]  Jonathan Borremans,et al.  A 86MHz-to-12GHz digital-intensive phase-modulated fractional-N PLL using a 15pJ/Shot 5ps TDC in 40nm digital CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[2]  Yorgos Palaskas,et al.  A 4.75GHz fractional frequency divider with digital spur calibration in 45nm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[3]  Michiel Steyaert,et al.  A 0.1-5GHz dual-VCO software-defined sigma delta frequency synthesizer in 45nm digital CMOS , 2009, RFIC 2009.

[4]  Y. Palaskas,et al.  A 4.75-GHz Fractional Frequency Divider-by-1.25 With TDC-Based All-Digital Spur Calibration in 45-nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[5]  Foster F. Dai,et al.  A 12-Bit Vernier Ring Time-to-Digital Converter in 0.13 $\mu{\hbox {m}}$ CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[6]  Stephan Henzler,et al.  A Local Passive Time Interpolation Concept for Variation-Tolerant High-Resolution Time-to-Digital Conversion , 2008, IEEE Journal of Solid-State Circuits.

[7]  Poras T. Balsara,et al.  1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Ping-Ying Wang,et al.  A Digital Intensive Fractional-N PLL and All-Digital Self-Calibration Schemes , 2009, IEEE Journal of Solid-State Circuits.

[9]  A.A. Abidi,et al.  All-Digital Outphasing Modulator for a Software-Defined Transmitter , 2009, IEEE Journal of Solid-State Circuits.

[10]  N. A. Moseley,et al.  Digitally Enhanced Software-Defined Radio Receiver Robust to Out-of-Band Interference , 2009, IEEE Journal of Solid-State Circuits.

[11]  Meng-Chang Lee,et al.  All-digital PLL and GSM/EDGE transmitter in 90nm CMOS , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[12]  A.A. Abidi,et al.  A 9 b, 1.25 ps Resolution Coarse–Fine Time-to-Digital Converter in 90 nm CMOS that Amplifies a Time Residue , 2008, IEEE Journal of Solid-State Circuits.

[13]  B. Helal,et al.  A Low Jitter Programmable Clock Multiplier Based on a Pulse Injection-Locked Oscillator With a Highly-Digital Tuning Loop , 2008, IEEE Journal of Solid-State Circuits.

[14]  J. Borremans,et al.  A 6fJ/step, 5.5ps time-to-digital converter for a digital PLL in 40nm digital LP CMOS , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[15]  Antonio Liscidini,et al.  Time to digital converter based on a 2-dimensions Vernier architecture , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[16]  C. Desset,et al.  A Low-Complexity, Low-Phase-Noise, Low-Voltage Phase-Aligned Ring Oscillator in 90 nm Digital CMOS , 2009, IEEE Journal of Solid-State Circuits.

[17]  Minjae Lee,et al.  An 800-MHz–6-GHz Software-Defined Wireless Receiver in 90-nm CMOS , 2006, IEEE Journal of Solid-State Circuits.

[18]  Timo Rahkonen,et al.  A CMOS Time-to-Digital Converter (TDC) Based On a Cyclic Time Domain Successive Approximation Interpolation Method , 2009, IEEE Journal of Solid-State Circuits.

[19]  P. Wambacq,et al.  A Compact Wideband Front-End Using a Single-Inductor Dual-Band VCO in 90 nm Digital CMOS , 2008, IEEE Journal of Solid-State Circuits.

[20]  Matthew Z. Straayer,et al.  A Low-Noise, Wide-BW 3.6GHz Digital ΔΣ Fractional-N Frequency Synthesizer with a Noise-Shaping Time-to-Digital Converter and Quantization Noise Cancellation , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[21]  Ian Galton,et al.  Spurious -Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[22]  A.A. Abidi,et al.  The Path to the Software-Defined Radio Receiver , 2007, IEEE Journal of Solid-State Circuits.

[23]  K.J. Wang,et al.  Spurious Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4 GHz Fractional-N PLL , 2008, IEEE Journal of Solid-State Circuits.

[24]  Fa Foster Dai,et al.  A 12-bit vernier ring time-to-digital converter in 0.13μm CMOS technology , 2009, 2009 Symposium on VLSI Circuits.

[25]  Matthew Z. Straayer,et al.  A Low-Noise Wide-BW 3.6-GHz Digital $\Delta\Sigma$ Fractional-N Frequency Synthesizer With a Noise-Shaping Time-to-Digital Converter and Quantization Noise Cancellation , 2008, IEEE Journal of Solid-State Circuits.

[26]  M.Z. Straayer,et al.  A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping , 2009, IEEE Journal of Solid-State Circuits.

[27]  Enrico Temporiti,et al.  A 3 GHz Fractional All-Digital PLL With a 1.8 MHz Bandwidth Implementing Spur Reduction Techniques , 2009, IEEE Journal of Solid-State Circuits.

[28]  Pierluigi Nuzzo,et al.  A 2-mm$^{2}$ 0.1–5 GHz Software-Defined Radio Receiver in 45-nm Digital CMOS , 2009, IEEE Journal of Solid-State Circuits.

[29]  Jan Craninckx,et al.  Wideband VCO with Simultaneous Switching of Frequency Band, Active Core and Varactor Size , 2006 .

[30]  J. Kostamovaara,et al.  A CMOS time-to-digital converter with better than 10 ps single-shot precision , 2006, IEEE Journal of Solid-State Circuits.

[31]  K. Muhammad,et al.  All-digital PLL and transmitter for mobile phones , 2005, IEEE Journal of Solid-State Circuits.