Interpretability indexes for Fuzzy classification in cognitive systems

Classification systems based on Fuzzy Logic are of particular importance in the ambit of cognitive systems, due to their ability of managing uncertainty and presenting interpretable knowledge bases by emulating human cognition processes. However, the notion of interpretability is not yet exhaustively defined. In this work, the properties assessing the interpretability of a fuzzy classifier are discussed, and on this basis two indexes are proposed, which numerically evaluate readability and semantic interpretability, respectively. These indexes are calculated for a benchmark dataset, showing how they can be used to quantitatively compare systems with different characteristics.

[1]  Anna Maria Fanelli,et al.  Interpretability constraints for fuzzy information granulation , 2008, Inf. Sci..

[2]  Francisco Herrera,et al.  Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures , 2011, Inf. Sci..

[3]  E. H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Man Mach. Stud..

[4]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[5]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[6]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[7]  Detlef D. Nauck,et al.  Measuring interpretability in rule-based classification systems , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[8]  Leszek Rutkowski,et al.  Flexible neuro-fuzzy systems , 2003, IEEE Trans. Neural Networks.

[9]  Witold Pedrycz,et al.  A Multiobjective Design of a Patient and Anaesthetist-Friendly Neuromuscular Blockade Controller , 2007, IEEE Transactions on Biomedical Engineering.

[10]  Massimo Esposito,et al.  Insights into Interpretability of Neuro-Fuzzy Systems , 2015, IFSA-EUSFLAT.

[11]  Robert Babuška,et al.  An overview of fuzzy modeling for control , 1996 .

[12]  C. R. Rao,et al.  The Utilization of Multiple Measurements in Problems of Biological Classification , 1948 .

[13]  Etienne E. Kerre,et al.  Defuzzification: criteria and classification , 1999, Fuzzy Sets Syst..

[14]  Brigitte Charnomordic,et al.  Learning interpretable fuzzy inference systems with FisPro , 2011, Inf. Sci..

[15]  Ralf Mikut,et al.  Interpretability issues in data-based learning of fuzzy systems , 2005, Fuzzy Sets Syst..

[16]  Hisao Ishibuchi,et al.  Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning , 2007, Int. J. Approx. Reason..

[17]  M. J. Frank On the simultaneous associativity ofF(x, y) andx+y−F(x, y) , 1978 .

[18]  Corrado Mencar,et al.  Interpretability of Fuzzy Systems , 2013, WILF.

[19]  Moshe Sipper,et al.  A fuzzy-genetic approach to breast cancer diagnosis , 1999, Artif. Intell. Medicine.

[20]  László T. Kóczy,et al.  Fuzzy rule interpolation for multidimensional input spaces with applications: a case study , 2005, IEEE Transactions on Fuzzy Systems.

[21]  Hannu Koivisto,et al.  A Dynamically Constrained Multiobjective Genetic Fuzzy System for Regression Problems , 2010, IEEE Transactions on Fuzzy Systems.

[22]  Giuseppe De Pietro,et al.  Fuzzy partitioning for clinical DSSs using statistical information transformed into possibility-based knowledge , 2014, Knowl. Based Syst..

[23]  Giuseppe De Pietro,et al.  Best Fuzzy Partitions to Build Interpretable DSSs for Classification in Medicine , 2013, HAIS.

[24]  José M. Alonso,et al.  Looking for a good fuzzy system interpretability index: An experimental approach , 2009, Int. J. Approx. Reason..

[25]  M. J. Frank On the simultaneous associativity of F(x, y) and x+y-F(x, y). (Short Communication). , 1978 .

[26]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .