Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review.

Methods for chemical analysis at the nanometer scale are crucial for understanding and characterizing nanostructures of modern materials and biological systems. Tip-enhanced Raman spectroscopy (TERS) combines the chemical information provided by Raman spectroscopy with the signal enhancement known from surface-enhanced Raman scattering (SERS) and the high spatial resolution of atomic force microscopy (AFM) or scanning tunneling microscopy (STM). A metallic or metallized tip is illuminated by a focused laser beam and the resulting strongly enhanced electromagnetic field at the tip apex acts as a highly confined light source for Raman spectroscopic measurements. This Review focuses on the prerequisites for the efficient coupling of light to the tip as well as the shortcomings and pitfalls that have to be considered for TERS imaging, a fascinating but still challenging way to look at the nanoworld. Finally, examples from recent publications have been selected to demonstrate the potential of this technique for chemical imaging with a spatial resolution of approximately 10 nm and sensitivity down to the single-molecule level for applications ranging from materials sciences to life sciences.

[1]  J. M. Worlock,et al.  Surface picosecond raman gain spectroscopy of a cyanide monolayer on silver , 1979 .

[2]  Geoffrey I N Waterhouse,et al.  Oxygen chemisorption on an electrolytic silver catalyst: a combined TPD and Raman spectroscopic study , 2003 .

[3]  M. Raschke,et al.  Tip-Enhanced Raman Imaging and Nanospectroscopy: Sensitivity, Symmetry, and Selection Rules , 2007, 0803.4464.

[4]  S. Kawata,et al.  Tip‐heating‐assisted Raman spectroscopy at elevated temperatures , 2011 .

[5]  Daniel J. Muller,et al.  Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force-volume AFM. , 2011, Angewandte Chemie.

[6]  D. Talaga,et al.  Imaging of single GaN nanowires by tip-enhanced Raman spectroscopy , 2009 .

[7]  M. J. Weaver,et al.  Test of surface selection rules for surface-enhanced Raman scattering: the orientation of adsorbed benzene and monosubstituted benzenes on gold , 1990 .

[8]  S. Kawata,et al.  Deep-UV tip-enhanced Raman scattering , 2009 .

[9]  Katrin F. Domke,et al.  Enhanced Raman spectroscopy: Single molecules or carbon? , 2007 .

[10]  D. Roy,et al.  Novel methodology for estimating the enhancement factor for tip-enhanced Raman spectroscopy , 2009 .

[11]  Y. Park,et al.  Characterization of thermally aged AlPO4-coated LiCoO2 thin films , 2012, Nanoscale Research Letters.

[12]  A. Hartschuh,et al.  Tip-enhanced near-field optical microscopy of quasi-1 D nanostructures. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  J. Maultzsch,et al.  Index assignment of a carbon nanotube rope using tip‐enhanced Raman spectroscopy , 2011, 1105.4427.

[14]  D. Roy,et al.  Fabrication of gold tips suitable for tip-enhanced Raman spectroscopy , 2008 .

[15]  Renato Zenobi,et al.  Nanoscale chemical imaging of single-layer graphene. , 2011, ACS nano.

[16]  S. Kawata,et al.  Highly reproducible tip‐enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone , 2012 .

[17]  Tip‐enhanced Raman scattering along a single wall carbon nanotubes bundle , 2010 .

[18]  Renato Zenobi,et al.  Understanding tip‐enhanced Raman spectra of biological molecules: a combined Raman, SERS and TERS study , 2012 .

[19]  R. McCreery,et al.  Raman Spectroscopy for Chemical Analysis: McCreery/Raman Spectroscopy , 2005 .

[20]  F. Keilmann,et al.  Near-field microscopy by elastic light scattering from a tip , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[22]  A. Engel,et al.  Chapter 9 Scanning Transmission Electron Microscopy: Biological Applications , 2009 .

[23]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. , 2012, Annual review of physical chemistry.

[24]  C. Barrios,et al.  Highly Stable, Protected Plasmonic Nanostructures for Tip Enhanced Raman Spectroscopy , 2009 .

[25]  Markus B. Raschke,et al.  Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy , 2010 .

[26]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. , 2008, Physical review letters.

[27]  J. Kauffman,et al.  Standardization of Raman spectra for transfer of spectral libraries across different instruments. , 2011, The Analyst.

[28]  Markus B. Raschke,et al.  Scanning-probe Raman spectroscopy with single-molecule sensitivity , 2006 .

[29]  D. F. Ogletree,et al.  Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[30]  Christoph Lienau,et al.  Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering , 2003 .

[31]  L. Novotný,et al.  Near‐field Raman spectroscopy using a sharp metal tip , 2003, Journal of microscopy.

[32]  N. Pieczonka,et al.  Inherent complexities of trace detection by surface-enhanced Raman scattering. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  Matthew M Adams,et al.  Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips. , 2006, Optics express.

[34]  Michael J. Sepaniak,et al.  Use of Atomic Layer Deposition to Improve the Stability of Silver Substrates for In-Situ, High Temperature SERS Measurements , 2010 .

[35]  A. Mews,et al.  Optical imaging of CdSe nanowires with nanoscale resolution. , 2011, Angewandte Chemie.

[36]  Qiyuan He,et al.  Graphene-based materials: synthesis, characterization, properties, and applications. , 2011, Small.

[37]  M. Chaigneau,et al.  Tip enhanced Raman spectroscopy on azobenzene thiol self-assembled monolayers on Au(111) , 2009 .

[38]  David Richards,et al.  Tip-enhanced Raman microscopy: practicalities and limitations , 2003 .

[39]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[40]  Craig Williams,et al.  High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam , 2010 .

[41]  F. Castro,et al.  Organic photovoltaics: principles and techniques for nanometre scale characterization , 2010, Nanotechnology.

[42]  Mortazavi,et al.  Supporting Online Material Materials and Methods Figs. S1 to S13 Tables S1 to S3 References Label-free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy , 2022 .

[43]  Weihua Zhang,et al.  Tip-enhanced Raman Spectroscopy - Its status, challenges and future directions , 2009 .

[44]  Gunter Georg Gunter Hoffmann,et al.  Micro-Raman and Tip-Enhanced Raman Spectroscopy of Carbon Allotropes , 2008 .

[45]  P. Drude Zur Elektronentheorie der Metalle , 1900 .

[46]  Jan Schmidt,et al.  Surface-Enhanced Raman Scattering Spectroscopy of Single Carbon Domains on Individual Ag Nanoparticles on a 25 ms Time Scale , 2000 .

[47]  K. Braun,et al.  Nanoscale spectroscopic imaging of organic semiconductor films by plasmon-polariton coupling. , 2010, Physical review letters.

[48]  R. Zenobi,et al.  Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. , 2009, Small.

[49]  B. Pettinger,et al.  High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum. , 2007, The Review of scientific instruments.

[50]  E. Bortchagovsky,et al.  A tetrahedral tip as a probe for tip‐enhanced Raman scattering and as a near‐field Raman probe , 2009 .

[51]  J. R. Kirtley,et al.  Enhanced raman scattering from carbon layers on silver , 1980 .

[52]  Valentinas Snitka,et al.  Novel gold cantilever for nano-Raman spectroscopy of graphene , 2011 .

[53]  John R. Lombardi,et al.  A Unified Approach to Surface-Enhanced Raman Spectroscopy , 2008 .

[54]  Christoph J. Brabec,et al.  Parabolic mirror‐assisted tip‐enhanced spectroscopic imaging for non‐transparent materials , 2009 .

[55]  Lukas Novotny,et al.  Tip‐enhanced Raman spectroscopy of carbon nanotubes , 2009 .

[56]  A. Jorio,et al.  Mechanism of near-field Raman enhancement in one-dimensional systems. , 2009, Physical review letters.

[57]  Peter Hermann,et al.  Imaging and strain analysis of nano-scale SiGe structures by tip-enhanced Raman spectroscopy. , 2011, Ultramicroscopy.

[58]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[59]  R Zenobi,et al.  Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. , 2010, Nano letters.

[60]  Y. Morita,et al.  Temporal fluctuation of tip-enhanced raman spectra of adenine molecules , 2007 .

[61]  L. Novotný,et al.  Antennas for light , 2011 .

[62]  Zhilin Yang,et al.  Deep ultraviolet tip-enhanced Raman scattering. , 2011, Chemical communications.

[63]  Louis E. Brus,et al.  Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals , 2003 .

[64]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[65]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[66]  Reuven Gordon,et al.  Extraordinary optical transmission brightens near-field fiber probe. , 2011, Nano letters.

[67]  A. Baranov,et al.  Nanometer-scale mapping of the strain and Ge content of Ge/Si quantum dots using enhanced Raman scattering by the tip of an atomic force microscope , 2011 .

[68]  L. Novotný,et al.  Tip-enhanced near-field optical microscopy of carbon nanotubes , 2009, Analytical and bioanalytical chemistry.

[69]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Yukihiro Ozaki,et al.  Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates. , 2006, The Journal of chemical physics.

[71]  Katrin F. Domke,et al.  Direct monitoring of plasmon resonances in a tip-surface gap of varying width , 2007 .

[72]  H. P. Lu,et al.  Simultaneous spectroscopic and topographic near-field imaging of TiO2 single surface states and interfacial electronic coupling. , 2011, Nano letters.

[73]  M. Chaigneau,et al.  Tip enhanced Raman spectroscopy evidence for amorphous carbon contamination on gold surfaces , 2010 .

[74]  X. Zhuang,et al.  New fluorescent probes for super-resolution imaging , 2011, Nature Biotechnology.

[75]  Katrin F. Domke,et al.  Tip‐enhanced Raman spectroscopy of 6H‐SiC with graphene adlayers: selective suppression of E1 modes , 2009 .

[76]  D. Abou‐Ras,et al.  Spatially resolved characterization of chemical species and crystal structures in CuInS2 and CuGax Sey thin films using Raman microscopy , 2009 .

[77]  B. Beckhoff,et al.  Comprehensive Comparison of Various Techniques for the Analysis of Elemental Distributions in Thin Films , 2011, Microscopy and Microanalysis.

[78]  R. Zenobi,et al.  A Strategy to Prevent Signal Losses, Analyte Decomposition, and Fluctuating Carbon Contamination Bands in Surface-Enhanced Raman Spectroscopy , 2008, Applied spectroscopy.

[79]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[80]  Weihua Zhang,et al.  Near-Field Heating, Annealing, and Signal Loss in Tip-Enhanced Raman Spectroscopy , 2008 .

[81]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[82]  E. Synge XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region , 1928 .

[83]  Satoshi Kawata,et al.  Nano‐scale analysis of graphene layers by tip‐enhanced near‐field Raman spectroscopy , 2009 .

[84]  M. Isaacson,et al.  Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures , 1984 .

[85]  K. Rowlen,et al.  Removal of Carbonaceous Contamination from SERS-Active Silver by Self-Assembly of Decanethiol. , 1998, Analytical chemistry.

[86]  Alyson V. Whitney,et al.  Toward a thermally robust operando surface-enhanced raman spectroscopy substrate , 2007 .

[87]  Xiaoniu Yang,et al.  Scanning near-field and confocal Raman microscopic investigation of P3HT-PCBM systems for solar cell applications , 2006 .

[88]  Renato Zenobi,et al.  Developments in and practical guidelines for tip-enhanced Raman spectroscopy. , 2012, Nanoscale.

[89]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[90]  Mark Bates,et al.  Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging , 2011, Nature Methods.

[91]  Achim Hartschuh,et al.  Optische Mikroskopie an CdSe‐Nanodrähten mit Nanometerauflösung , 2011 .

[92]  S. Kawata,et al.  Confinement of enhanced field investigated by tip-sample gap regulation in tapping-mode tip-enhanced Raman microscopy , 2007 .

[93]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[94]  P. Drude,et al.  Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte , 1900 .

[95]  J. Loos,et al.  Atomic force and shear force based tip-enhanced Raman spectroscopy and imaging , 2007 .

[96]  Stefan W. Hell,et al.  Nanoscopy in a Living Mouse Brain , 2012, Science.

[97]  P. Dittrich,et al.  Tip-enhanced Raman spectroscopic imaging of patterned thiol monolayers , 2011, Beilstein journal of nanotechnology.

[98]  S. Kawata,et al.  Metallized tip amplification of near-field Raman scattering , 2000 .

[99]  S. Kawata,et al.  Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres , 2009 .

[100]  D. Kern,et al.  Gold nanocone near-field scanning optical microscopy probes. , 2011, ACS nano.

[101]  Dai Zhang,et al.  Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement , 2009 .

[102]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[103]  A. Kudelski,et al.  SERS on carbon chain segments: monitoring locally surface chemistry , 2000 .

[104]  U. Hensen,et al.  Molekulare Abbildung und Quantifizierung chemischer und physikalischer Eigenschaften nativer Proteine mit Kraftvolumen‐Rasterkraftmikroskopie , 2011 .

[105]  R. Zenobi,et al.  Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips , 2007, Analytical and bioanalytical chemistry.

[106]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[107]  Leann Tilley,et al.  Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte. , 2011, Nano letters.

[108]  Masayuki Futamata,et al.  Inelastic scattering and emission correlated with enormous SERS of dye adsorbed on Ag nanoparticles , 2005 .

[109]  Mark D. Foster,et al.  Extending lifetime of plasmonic silver structures designed for high-resolution chemical imaging or chemical and biological sensing , 2008, SPIE Defense + Commercial Sensing.

[110]  J. Maultzsch,et al.  Studying the local character of Raman features of single-walled carbon nanotubes along a bundle using TERS , 2011, Nanoscale research letters.

[111]  J. Maultzsch,et al.  Characterization of dye molecules and carbon nanostructures by tip‐enhanced Raman spectroscopy , 2009 .

[112]  C. Brabec,et al.  High‐Resolution Spectroscopic Mapping of the Chemical Contrast from Nanometer Domains in P3HT:PCBM Organic Blend Films for Solar‐Cell Applications , 2010 .

[113]  R. Zenobi,et al.  Nanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[114]  Renato Zenobi,et al.  Performing tip‐enhanced Raman spectroscopy in liquids , 2009 .

[115]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[116]  L. Novotný,et al.  Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. , 2007, Nano letters.

[117]  Gerhard Ertl,et al.  Surface Enhanced Raman Spectroscopy: Towards Single Molecule Spectroscopy , 2000 .

[118]  R. Vogelgesang,et al.  Simulation of optical near and far fields of dielectric apertureless scanning probes , 2006 .

[119]  S. Kawata,et al.  Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. , 2006, Nano letters.

[120]  Achim Hartschuh,et al.  Tip-enhanced Raman spectroscopic imaging of localized defects in carbon nanotubes , 2010 .

[121]  M. Käll,et al.  Direct Observation of Heterogeneous Photochemistry on Aggregated Ag Nanocrystals Using Raman Spectroscopy: The Case of Photoinduced Degradation of Aromatic Amino Acids , 2004 .

[122]  Jeremy J. Baumberg,et al.  Understanding the Surface-Enhanced Raman Spectroscopy 'Background' , 2010 .

[123]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.

[124]  Lukas Novotny,et al.  Near-field optical microscopy and spectroscopy with pointed probes. , 2006, Annual review of physical chemistry.