Normal forms for algebras of connection

Recent years have seen a growing interest towards algebraic structures that are able to express formalisms different from the standard, tree-like presentation of terms. Many of these approaches reveal a specific interest towards the application to the 'distributed and concurrent systems' field, but an exhaustive comparison between them is sometimes difficult, because their presentations can be quite dissimilar. This work is a first step towards a unified view: Focusing on the primitive ingredients of distributed spaces (namely interfaces, links and basic modules), we introduce a general schema for describing a normal form presentation of many algebraic formalisms, and show that those normal forms can be thought of as arrows of suitable monoidal categories.

[1]  José Meseguer,et al.  Axiomatizing the algebra of net computations and processes , 1996, Acta Informatica.

[2]  Joseph A. Goguen,et al.  Algebraic semantics of imperative programs , 1996, Foundations of computing series.

[3]  J. Meseguer,et al.  Process and Term Tile Logic , 1998 .

[4]  Fabio Gadducci,et al.  Axioms for Contextual Net Processes , 1998, ICALP.

[5]  Fabio Gadducci,et al.  An inductive view of graph transformation , 1997, WADT.

[6]  Fabio Gadducci,et al.  A 2-Categorical Presentation of Term Graph Rewriting , 1997, Category Theory and Computer Science.

[7]  R. Bruni Tile Logic for Synchronized Rewriting of Concurrent Systems , 1999 .

[8]  Nicoletta Sabadini,et al.  Bicategories of processes , 1997 .

[9]  Masahito Hasegawa,et al.  Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi , 1997, TLCA.

[10]  Michael Pfender,et al.  Universal algebra in s-monoidal categories , 1974 .

[11]  Cristian S. Calude,et al.  Discrete Mathematics and Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[12]  R. Milner Calculi for interaction , 1996, Acta Informatica.

[13]  Gheorghe Stefanescu,et al.  Towards a new algebraic foundation of flowchart scheme theory , 1990 .

[14]  Reiko Heckel,et al.  A Bi-Categorical Axiomatisation of Concurrent Graph Rewriting , 1999, CTCS.

[15]  Marko C. J. D. van Eekelen,et al.  Term Graph Rewriting , 1987, PARLE.

[16]  Francesca Rossi,et al.  Graph Rewriting, Constraint Solving and Tiles for Coordinating Distributed Systems , 1999, Appl. Categorical Struct..

[17]  S. Lane Categories for the Working Mathematician , 1971 .

[18]  José Meseguer,et al.  Mapping tile logic into rewriting logic , 1997, WADT.

[19]  Fabio Gadducci,et al.  The tile model , 2000, Proof, Language, and Interaction.

[20]  Fabio Gadducci,et al.  Functorial Semantics for Multi-algebras , 1998, WADT.

[21]  Vladimiro Sassone,et al.  On the Semantics of Petri Nets: Processes, Unfoldings and Infinite Computations. , 1994 .

[22]  Edmund Robinson,et al.  Premonoidal categories and notions of computation , 1997, Mathematical Structures in Computer Science.

[23]  José Meseguer,et al.  Representation Theorems for Petri Nets , 1997, Foundations of Computer Science: Potential - Theory - Cognition.

[24]  Gheorghe Stefănescu,et al.  On Flowchart Theories: Part II. The Nondeterministic Case , 1987, Theor. Comput. Sci..

[25]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Fabio Gadducci,et al.  An Algebraic Presentation of Term Graphs, via GS-Monoidal Categories , 1999, Appl. Categorical Struct..

[27]  Virgil Emil Cazanescu,et al.  Classes of finite relations as initial abstract data types I , 1991, Discret. Math..

[28]  Rajagopal Nagarajan,et al.  Interaction categories and the foundations of typed concurrent programming , 1996, NATO ASI DPD.

[29]  Saunders MacLane,et al.  Natural Associativity and Commutativity , 1963 .

[30]  Gian Luigi Ferrari,et al.  Tile Formats for Located and Mobile Systems , 2000, Inf. Comput..

[31]  Masahito Hasegawa Recursion from Cyclic Sharing , 1999 .

[32]  Edmund Robinson,et al.  Categories of Partial Maps , 1988, Inf. Comput..

[33]  Zena M. Ariola,et al.  Equational Term Graph Rewriting , 1996, Fundam. Informaticae.

[34]  Vladimiro Sassone,et al.  An Axiomatization of the Algebra of Petri Net Concatenable Processes , 1996, Theor. Comput. Sci..

[35]  José Meseguer,et al.  Membership algebra as a logical framework for equational specification , 1997, WADT.

[36]  Nicoletta Sabadini,et al.  Span(Graph): A Categorial Algebra of Transition Systems , 1997, AMAST.

[37]  Roberto Bruni,et al.  Functorial semantics for Petri nets under the individual token philosophy , 1999, CTCS.

[38]  Law Fw FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .

[39]  Vladimiro Sassone Strong Concatenable Processes: An Approach to the Category of Petri Net Computations , 1994 .