Evaluation of small elements of the eigenvectors of certain symmetric tridiagonal matrices with high relative accuracy

Evaluation of the eigenvectors of symmetric tridiagonal matrices is one of the most basic tasks in numerical linear algebra. It is a widely known fact that, in the case of well separated eigenvalues, the eigenvectors can be evaluated with high relative accuracy. Nevertheless, in general, each coordinate of the eigenvector is evaluated with only high $absolute$ accuracy. In particular, those coordinates whose magnitude is below the machine precision are not expected to be evaluated with any accuracy whatsoever. It turns out that, under certain conditions, frequently ecountered in applications, small (e.g. $10^{-50}$) coordinates of eigenvectors of symmetric tridiagonal matrices can be evaluated with high $relative$ accuracy. In this paper, we investigate such conditions, carry out the analysis, and describe the resulting numerical schemes. While our schemes can be viewed as a modification of already existing (and well known) numerical algorithms, the related error analysis appears to be new. Our results are illustrated via several numerical examples.

[1]  F. W. J. Olver,et al.  Some new asymptotic expansions for Bessel functions of large orders , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[3]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[4]  Andrei Osipov Certain upper bounds on the eigenvalues associated with prolate spheroidal wave functions , 2012 .

[5]  H. M. Antia Algebraic Eigenvalue Problem , 2012 .

[6]  V. Kublanovskaya On some algorithms for the solution of the complete eigenvalue problem , 1962 .

[7]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[8]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[9]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[10]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[11]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[12]  Vladimir Rokhlin,et al.  On the evaluation of prolate spheroidal wave functions and associated quadrature rules , 2013, 1301.1707.

[13]  V. Rokhlin,et al.  Prolate spheroidal wavefunctions, quadrature and interpolation , 2001 .

[14]  V. Rokhlin,et al.  Prolate Spheroidal Wave Functions of Order Zero , 2013 .

[15]  James Demmel,et al.  Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..

[16]  Gilbert G. Walter,et al.  Prolate Spheroidal Wave Functions and Wavelets , 2006 .

[17]  J. G. F. Francis,et al.  The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..

[18]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[19]  A. Booth Numerical Methods , 1957, Nature.

[20]  W. Givens Numerical Computation of the Characteristic Values of a Real Symmetric Matrix , 1954 .

[21]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[22]  J. H. Wilkinson,et al.  Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection , 1967 .

[23]  Vladimir Rokhlin,et al.  Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit , 2007 .

[24]  W. Gragg,et al.  On computing accurate singular values and eigenvalues of matrices with acyclic graphs , 1992 .

[25]  H. Keller,et al.  Analysis of Numerical Methods , 1967 .

[26]  Gregory Beylkin,et al.  Fast and Accurate Con-Eigenvalue Algorithm for Optimal Rational Approximations , 2010, SIAM J. Matrix Anal. Appl..

[27]  C Rajakumar,et al.  Algebraic Eigenvalue Problem in Boundary Elements , 2004 .

[28]  E. C. OBI Eigenvalue Distribution of Time and Frequency Limiting , 2007 .

[29]  G. Beylkin,et al.  On approximation of functions by exponential sums , 2005 .

[30]  S. Eisenstat,et al.  A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..

[31]  Gene H. Golub,et al.  Matrix computations , 1983 .

[32]  A. Osipov Prolate Spheroidal Wave Functions Explicit Upper Bounds on the Eigenvalues Associated with Prolate Spheroidal Wave Functions , 2012 .

[33]  V. Rokhlin,et al.  Detailed analysis of prolate quadratures and interpolation formulas , 2012, 1208.4816.