Corotational formulation for nonlinear dynamics of beams with arbitrary thin-walled open cross-sections

A new consistent corotational formulation for nonlinear dynamics of beams with arbitrary thin-walled cross-section is presented. The novelty is that the warping deformations and the eccentricity of the shear center are fully taken into account. Therefore, additional terms are introduced in the expressions of the inertia force vector and the tangent dynamic matrix. Their contribution is then investigated considering several numerical examples. Besides, the element has seven degrees of freedom at each node and cubic shape functions are used to interpolate local transverse displacements and axial rotations. The formulation's accuracy is assessed considering five examples with comparisons against 3D-solid solutions.

[1]  M. A. Crisfield,et al.  Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics , 1997 .

[2]  M. Hjiaj,et al.  Dynamics of 3D beam elements in a corotational context: A comparative study of established and new formulations , 2012 .

[3]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[4]  C. Pacoste,et al.  Co-rotational beam elements with warping effects in instability problems , 2002 .

[5]  Qiang Xue,et al.  Dynamic response and instability of frame structures , 2001 .

[6]  A. Ibrahimbegovic,et al.  Finite rotations in dynamics of beams and implicit time-stepping schemes , 1998 .

[7]  K. Hsiao,et al.  Geometrically Non-Linear Dynamic Analysis of Thin-Walled Beams , 2009, WCE 2009.

[8]  P. Betsch,et al.  Constrained dynamics of geometrically exact beams , 2003 .

[9]  Werner Wagner,et al.  THEORY AND NUMERICS OF THREE-DIMENSIONAL BEAMS WITH ELASTOPLASTIC MATERIAL BEHAVIOUR ∗ , 2000 .

[10]  K. Bathe,et al.  FINITE ELEMENT FORMULATIONS FOR LARGE DEFORMATION DYNAMIC ANALYSIS , 1975 .

[11]  Alberto Cardona,et al.  A nonlinear beam element formulation in the framework of an energy preserving time integration scheme for constrained multibody systems dynamics , 2008 .

[12]  Steen Krenk,et al.  Non-linear Modeling and Analysis of Solids and Structures , 2009 .

[13]  K. Hsiao,et al.  A CO-ROTATIONAL FORMULATION FOR NONLINEAR DYNAMIC ANALYSIS OF CURVED EULER BEAM , 1995 .

[14]  Nobutoshi Masuda,et al.  Nonlinear dynamic analysis of frame structures , 1987 .

[15]  J. Reddy ON LOCKING-FREE SHEAR DEFORMABLE BEAM FINITE ELEMENTS , 1997 .

[16]  M. Crisfield,et al.  An energy conserving co-rotational procedure for non-linear dynamics with finite elements , 1996 .

[17]  C. Rankin,et al.  THE USE OF PROJECTORS TO IMPROVE FINITE ELEMENT PERFORMANCE , 1988 .

[18]  D. Zupan,et al.  Dynamics of spatial beams in quaternion description based on the Newmark integration scheme , 2013 .

[19]  Aslam Kassimali,et al.  Large deformations of framed structures under static and dynamic loads , 1976 .

[20]  Gordan Jelenić,et al.  Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics , 1999 .

[21]  M. Géradin,et al.  Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra , 1988 .

[22]  J. Argyris An excursion into large rotations , 1982 .

[23]  S. Atluri,et al.  Dynamic analysis of planar flexible beams with finite rotations by using inertial and rotating frames , 1995 .

[24]  K. Hsiao,et al.  A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams , 1999 .

[25]  M. Crisfield,et al.  Dynamics of 3-D co-rotational beams , 1997 .

[26]  M. Hjiaj,et al.  A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures , 2014 .

[27]  M. A. Crisfield,et al.  A unified co-rotational framework for solids, shells and beams , 1996 .

[28]  A. Ibrahimbegovic,et al.  Computational aspects of vector-like parametrization of three-dimensional finite rotations , 1995 .

[29]  B. Tabarrok,et al.  Co-rotational dynamic analysis of flexible beams , 1998 .

[30]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[31]  J. Mäkinen Total Lagrangian Reissner's geometrically exact beam element without singularities , 2007 .

[32]  Adnan Ibrahimbegovic,et al.  Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations , 2002 .

[33]  J. C. Simo,et al.  On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .

[34]  S. Atluri,et al.  Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams , 1988 .

[35]  H. Elkaranshawy,et al.  Corotational finite element analysis of planar flexible multibody systems , 1995 .

[36]  C. Rankin,et al.  Finite rotation analysis and consistent linearization using projectors , 1991 .

[37]  Miran Saje,et al.  Quaternion-based dynamics of geometrically nonlinear spatial beams using the Runge-Kutta method , 2012 .

[38]  M. Hjiaj,et al.  Efficient formulation for dynamics of corotational 2D beams , 2011 .

[39]  U. Galvanetto,et al.  AN ENERGY‐CONSERVING CO‐ROTATIONAL PROCEDURE FOR THE DYNAMICS OF PLANAR BEAM STRUCTURES , 1996 .

[40]  Gordan Jelenić,et al.  INTERPOLATION OF ROTATIONAL VARIABLES IN NONLINEAR DYNAMICS OF 3D BEAMS , 1998 .

[41]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[42]  A. Ibrahimbegovic On the choice of finite rotation parameters , 1997 .