Tunable spin and valley excitations of correlated insulators in Γ-valley moiré bands

[1]  J. Shan,et al.  Evidence of frustrated magnetic interactions in a Wigner–Mott insulator , 2022, Nature Nanotechnology.

[2]  Xiaodong Xu,et al.  Light-induced ferromagnetism in moiré superlattices , 2022, Nature.

[3]  J. Shan,et al.  A tunable bilayer Hubbard model in twisted WSe2 , 2022, Nature Nanotechnology.

[4]  J. Shan,et al.  Dielectric catastrophe at the Wigner-Mott transition in a moiré superlattice , 2022, Nature Communications.

[5]  Kenji Watanabe,et al.  Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit , 2021, Nature Nanotechnology.

[6]  Kenji Watanabe,et al.  Correlated Hofstadter spectrum and flavour phase diagram in magic-angle twisted bilayer graphene , 2021, Nature Physics.

[7]  J. Shan,et al.  Quantum anomalous Hall effect from intertwined moiré bands , 2021, Nature.

[8]  J. Shan,et al.  Continuous Mott transition in semiconductor moiré superlattices , 2021, Nature.

[9]  A. Millis,et al.  Quantum criticality in twisted transition metal dichalcogenides , 2021, Nature.

[10]  A. MacDonald,et al.  Γ valley transition metal dichalcogenide moiré bands , 2021, Proceedings of the National Academy of Sciences.

[11]  J. Shan,et al.  Charge-order-enhanced capacitance in semiconductor moiré superlattices , 2021, Nature Nanotechnology.

[12]  V. Vitale,et al.  Flat band properties of twisted transition metal dichalcogenide homo- and heterobilayers of MoS2, MoSe2, WS2 and WSe2 , 2021, 2D Materials.

[13]  A. Georges,et al.  Moiré heterostructures as a condensed-matter quantum simulator , 2020, Nature Physics.

[14]  A. Pasupathy,et al.  Deep moiré potentials in twisted transition metal dichalcogenide bilayers , 2020, Nature Physics.

[15]  Kenji Watanabe,et al.  Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice , 2020, Nature Physics.

[16]  Mit H. Naik,et al.  Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices , 2020, Nature Materials.

[17]  S. Trebst,et al.  Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2 , 2020, Nature Communications.

[18]  J. Shan,et al.  Correlated insulating states at fractional fillings of moiré superlattices , 2020, Nature.

[19]  E. Andrei,et al.  Graphene bilayers with a twist , 2020, Nature Materials.

[20]  L. Balents,et al.  Superconductivity and strong correlations in moiré flat bands , 2020 .

[21]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[22]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[23]  Kenji Watanabe,et al.  Odd- and even-denominator fractional quantum Hall states in monolayer WSe2 , 2019, Nature Nanotechnology.

[24]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[25]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[26]  R. Walker,et al.  Publisher , 2019, Definitions.

[27]  Kenji Watanabe,et al.  Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2 , 2017, Nature Materials.

[28]  Xiaodong Xu,et al.  Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures , 2017, Science Advances.

[29]  Aaron M. Jones,et al.  Magnetic control of valley pseudospin in monolayer WSe2 , 2014, Nature Physics.

[30]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[31]  G. Schmid The Nature of Nanotechnology , 2010 .

[32]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.