Poisson surface reconstruction

We show that surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient to data noise. Unlike radial basis function schemes, our Poisson approach allows a hierarchy of locally supported basis functions, and therefore the solution reduces to a well conditioned sparse linear system. We describe a spatially adaptive multiscale algorithm whose time and space complexities are proportional to the size of the reconstructed model. Experimenting with publicly available scan data, we demonstrate reconstruction of surfaces with greater detail than previously achievable.

[1]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[2]  Jean-Daniel Boissonnat,et al.  Geometric structures for three-dimensional shape representation , 1984, TOGS.

[3]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[4]  Shigeru Muraki,et al.  Volumetric shape description of range data using “Blobby Model” , 1991, SIGGRAPH.

[5]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[6]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[7]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[8]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1994, ACM Trans. Graph..

[9]  Chandrajit L. Bajaj,et al.  Automatic reconstruction of surfaces and scalar fields from 3D scans , 1995, SIGGRAPH.

[10]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[11]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[12]  Roni Yagel,et al.  Octree-based decimation of marching cubes surfaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[13]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[14]  In-Kwon Lee,et al.  Curve reconstruction from unorganized points , 2000, Comput. Aided Geom. Des..

[15]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[16]  Rüdiger Westermann,et al.  Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces , 1999, The Visual Computer.

[17]  S. Osher,et al.  Fast surface reconstruction using the level set method , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[18]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[19]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[20]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[21]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[22]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2002, TOGS.

[23]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[24]  Steve Marschner,et al.  Filling holes in complex surfaces using volumetric diffusion , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[25]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[26]  Multi-level partition of unity implicits , 2005, ACM Trans. Graph..

[27]  Greg Humphreys,et al.  A multigrid solver for boundary value problems using programmable graphics hardware , 2003, HWWS '03.

[28]  Tamal K. Dey,et al.  Tight cocone: a water-tight surface reconstructor , 2003, SM '03.

[29]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[30]  Eitan Grinspun,et al.  Sparse matrix solvers on the GPU: conjugate gradients and multigrid , 2003, SIGGRAPH Courses.

[31]  James F. O'Brien,et al.  Spectral surface reconstruction from noisy point clouds , 2004, SGP '04.

[32]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, ACM Trans. Graph..

[33]  Frank Losasso,et al.  Simulating water and smoke with an octree data structure , 2004, SIGGRAPH 2004.

[34]  Tamal K. Dey,et al.  Provable surface reconstruction from noisy samples , 2004, SCG '04.

[35]  James F. O'Brien,et al.  Interpolating and approximating implicit surfaces from polygon soup , 2004, SIGGRAPH Courses.

[36]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[37]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, SIGGRAPH 2004.

[38]  Szymon Rusinkiewicz,et al.  Efficiently combining positions and normals for precise 3D geometry , 2005, ACM Trans. Graph..

[39]  Michael M. Kazhdan,et al.  Reconstruction of solid models from oriented point sets , 2005, SGP '05.

[40]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2005, SIGGRAPH Courses.

[41]  James F. O'Brien,et al.  Interpolating and approximating implicit surfaces from polygon soup , 2005, SIGGRAPH Courses.

[42]  Diego F. Nehab,et al.  Efficiently combining positions and normals for precise 3D geometry , 2005, SIGGRAPH 2005.

[43]  P. Schröder,et al.  Sparse matrix solvers on the GPU: conjugate gradients and multigrid , 2003, SIGGRAPH Courses.