Quantum correlations of tripartite entangled states under Gaussian noise

[1]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[2]  Soonchil Lee,et al.  Fidelity of quantum teleportation through noisy channels , 2002 .

[3]  M. Van Raamsdonk,et al.  Building up spacetime with quantum entanglement , 2010 .

[4]  Samuel L. Braunstein,et al.  Dense coding for continuous variables , 1999, quant-ph/9910010.

[5]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[6]  Christoph Becher,et al.  Control and Measurement of Three-Qubit Entangled States , 2004, Science.

[7]  Arthur Tsamouo Tsokeng,et al.  Quantum correlations and decoherence dynamics for a qutrit–qutrit system under random telegraph noise , 2017, Quantum Inf. Process..

[8]  Péter Makra,et al.  Signal-to-noise ratio gain in stochastic resonators driven by coloured noises , 2003 .

[9]  M. Mildner,et al.  Re-epithelialization and immune cell behaviour in an ex vivo human skin model , 2020, Scientific Reports.

[10]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[11]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[12]  Some Sankar Bhattacharya,et al.  Improvement in device-independent witnessing of genuine tripartite entanglement by local marginals , 2017 .

[13]  F. Brandão Quantifying entanglement with witness operators , 2005, quant-ph/0503152.

[14]  Thomas Matyus,et al.  A fully automated entanglement-based quantum cryptography system for telecom fiber networks , 2009, 0901.2725.

[15]  M. Paris,et al.  Non-Markovian dynamics of single- and two-qubit systems interacting with Gaussian and non-Gaussian fluctuating transverse environments. , 2015, The Journal of chemical physics.

[16]  Engineering decoherence for two-qubit systems interacting with a classical environment , 2014, 1408.3010.

[17]  J. Lohstroh Static and dynamic noise margins of logic circuits , 1979 .

[18]  Paolo Bordone,et al.  Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise , 2013, 1302.1430.

[19]  H. Weinfurter,et al.  Witnessing multipartite entanglement , 2003, quant-ph/0309043.

[20]  G. Adesso,et al.  Measures and applications of quantum correlations , 2016, 1605.00806.

[21]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[22]  Claudia Benedetti,et al.  Characterization of classical Gaussian processes using quantum probes , 2014, 1406.7610.

[23]  Svetlichny,et al.  Distinguishing three-body from two-body nonseparability by a Bell-type inequality. , 1987, Physical review. D, Particles and fields.

[24]  L. C. Fai,et al.  Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise , 2017 .

[25]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[26]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[27]  S. Fritzsche,et al.  Entanglement dynamics of three-qubit states in noisy channels , 2010, 1002.3064.

[28]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[29]  J. Siewert,et al.  Quantifying tripartite entanglement of three-qubit generalized Werner states. , 2012, Physical review letters.

[30]  L. C. Fai,et al.  Effects of static noise on the dynamics of quantum correlations for a system of three qubits , 2017 .

[31]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[32]  Ludovico Lami,et al.  Genuine-multipartite entanglement criteria based on positive maps , 2016, 1609.08126.

[33]  Tal Mor,et al.  Entanglement and deterministic quantum computing with one qubit , 2016, 1606.05283.

[34]  S. Maniscalco,et al.  DYNAMICS OF QUANTUM CORRELATIONS IN TWO-QUBIT SYSTEMS WITHIN NON-MARKOVIAN ENVIRONMENTS , 2012, 1205.6419.

[35]  Ping Xu,et al.  Implementation of a measurement-device-independent entanglement witness. , 2014, Physical review letters.

[36]  Bo Wang,et al.  Non-Markovian effect on the quantum discord , 2009, 0911.1845.

[37]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[38]  M. Ghasemi,et al.  Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method , 2017, The European Physical Journal Plus.

[39]  Kuate Fodouop Fabrice,et al.  Tripartite quantum discord dynamics in qubits driven by the joint influence of distinct classical noises , 2021, Quantum Inf. Process..

[40]  V. Vedral,et al.  Classical and quantum correlations under decoherence , 2009, 0905.3396.

[41]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[42]  Martin Tchoffo,et al.  Dynamics and protection of quantum correlations in a qubit–qutrit system subjected locally to a classical random field and colored noise , 2020, Quantum Inf. Process..

[43]  Lee,et al.  Entanglement teleportation via werner states , 2000, Physical review letters.

[44]  Decoherence of a measure of entanglement , 2004, quant-ph/0412141.

[45]  Jian-Wei Pan,et al.  Greenberger-Horne-Zeilinger-state analyzer , 1998 .

[46]  Raúl Toral,et al.  Enhancement of stochastic resonance: the role of non Gaussian noises , 2001 .

[47]  Salman Khan,et al.  The Dynamics of Quantum Correlations in Mixed Classical Environments , 2016 .

[48]  Nicolas Gisin,et al.  Measurement-device-independent entanglement witnesses for all entangled quantum states. , 2012, Physical review letters.

[49]  Martin Tchoffo,et al.  Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise , 2016 .

[50]  F. F. Fanchini,et al.  Non-Markovian dynamics of quantum discord , 2009, 0911.1096.

[51]  L. C. Fai,et al.  Dynamics of entanglement and quantum states transitions in spin-qutrit systems under classical dephasing and the relevance of the initial state , 2018 .

[52]  J. Piilo,et al.  Sudden transition between classical and quantum decoherence. , 2010, Physical review letters.

[53]  Jin‐Liang Guo,et al.  Dynamics and protection of tripartite quantum correlations in a thermal bath , 2015 .

[54]  NMR GHZ , 1997, quant-ph/9709025.

[55]  J. R. Wallis,et al.  Computer Experiments With Fractional Gaussian Noises: Part 1, Averages and Variances , 1969 .

[56]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[57]  Laura Sacerdote,et al.  The Ornstein–Uhlenbeck neuronal model with signal-dependent noise , 2001 .

[58]  S. Fei,et al.  Concurrence of arbitrary dimensional bipartite quantum states. , 2005, Physical review letters.

[59]  E. Polzik,et al.  Spin squeezed atoms: a macroscopic entangled ensemble created by light , 1999 .

[60]  Paul Skrzypczyk,et al.  Methods to estimate entanglement in teleportation experiments , 2018, Physical Review A.

[61]  Andreas Buchleitner,et al.  Decoherence and multipartite entanglement. , 2004, Physical review letters.

[62]  M. G. A. Paris,et al.  Dynamics of quantum correlations in colored-noise environments , 2012, 1212.1484.

[63]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[64]  V. V. Dodonov,et al.  Purity- and entropy-bounded uncertainty relations for mixed quantum states , 2002 .

[65]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[66]  Mario Ziman,et al.  Concurrence versus purity: Influence of local channels on Bell states of two qubits , 2005 .

[67]  M. P. Almeida,et al.  Environment-Induced Sudden Death of Entanglement , 2007, Science.

[68]  Peter Zoller,et al.  Measuring multipartite entanglement through dynamic susceptibilities , 2015, Nature Physics.