Lindenbaum algebras of intuitionistic theories and free categories

Abstract We consider formal theories synonymous with various free categories (logoi and topoi). Their Lindenbaum algebras may be described as the lattices of subobjects of a terminator. These theories have intuitionistic logic. We show that the Lindenbaum algebras of second order and higher order arithmetic (topoi), and set theory are not isomorphic to the Lindenbaum algebras of first order theories such as arithmetic (logoi). We also show that there are only five kernels of representations of the free Heyting algebra on one generator in these Lindenbaum algebras.

[1]  C. Smoryński Nonstandard Models and Constructivity , 1982 .

[2]  M. Makkai,et al.  First order categorical logic , 1977 .

[3]  André Joyal,et al.  La logique des topos , 1981, Journal of Symbolic Logic.

[4]  Andrew M. Pitts,et al.  An application of open maps to categorical logic , 1983 .

[5]  Harvey M. Friedman,et al.  The lack of definable witnesses and provably recursive functions in intuitionistic set theories , 1985 .

[6]  J. Myhill,et al.  Some properties of intuitionistic zermelo-frankel set theory , 1973 .

[7]  H. Friedman Some applications of Kleene's methods for intuitionistic systems , 1973 .

[8]  Peter FREYD Choice and well-ordering , 1987, Ann. Pure Appl. Log..

[9]  Harold Simmons,et al.  An algebraic version of Cantor-Bendixson analysis , 1982 .

[10]  H. Friedman,et al.  The disjunction property implies the numerical existence property. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[11]  H. Friedman,et al.  Arithmetic transfinite induction and recursive well-orderings , 1985 .

[12]  Dick de Jongh Formulas of One Propositional Variable in Intuitionistic Arithmetic , 1982 .

[13]  D. Scott,et al.  Sheaves and logic , 1979 .

[14]  A. Joyal,et al.  An extension of the Galois theory of Grothendieck , 1984 .

[15]  Andrew M. Pitts,et al.  Amalgamation and interpolation in the category of heyting algebras , 1983 .

[16]  Andre Scedrov,et al.  On the impossibility of explicit upper bounds on lengths of some provably finite algorithms in computable analysis , 1986, Ann. Pure Appl. Log..

[17]  Philip J. Scott,et al.  A Note on the Friedman Slash and Freyd Covers , 1982 .