Grow-Up Rate and Refined Asymptotics for a Two-Dimensional Patlak-Keller-Segel Model in a Disk

We consider a special case of the Patlak–Keller–Segel system in a disc, which arises in the modeling of chemotaxis phenomena. For a critical value of the total mass, the solutions are known to be global in time but with density becoming unbounded, leading to a phenomenon of mass-concentration in infinite time. We establish the precise grow-up rate and obtain refined asymptotic estimates of the solutions. Unlike in most of the similar, recently studied, grow-up problems, the rate is neither polynomial nor exponential. In fact, the maximum of the density behaves like $e^{\sqrt{2t}}$ for large time. In particular, our study provides a rigorous proof of a behavior suggested by Sire and Chavanis [Phys. Rev. E (3), 66 (2002), 046133] on the basis of formal arguments.

[1]  Piotr Biler,et al.  LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .

[2]  E. Yanagida,et al.  On bounded and unbounded global solutions of a supercritical semilinear heat equation , 2003 .

[3]  C. Patlak Random walk with persistence and external bias , 1953 .

[4]  W. Mccrea An Introduction to the Study of Stellar Structure , 1939, Nature.

[5]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[6]  V. Nanjundiah,et al.  Chemotaxis, signal relaying and aggregation morphology. , 1973, Journal of theoretical biology.

[7]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[8]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[9]  G. Wolansky On steady distributions of self-attracting clusters under friction and fluctuations , 1992 .

[10]  M. Fila,et al.  Grow-up rate of solutions for a supercritical semilinear diffusion equation , 2004 .

[11]  Takashi Suzuki,et al.  Free Energy and Self-Interacting Particles , 2005 .

[12]  Benoît Perthame,et al.  Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .

[13]  M. A. Herrero The Mathematics of Chemotaxis , 2007 .

[14]  Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  A. Lacey,et al.  Global existence and convergence to a singular steady state for a semilinear heat equation , 1987, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  M. A. Herrero,et al.  Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.

[17]  Takashi Suzuki,et al.  Chemotactic collapse in a parabolic-elliptic system of mathematical biology , 1999, Advances in Differential Equations.

[18]  M. A. Herrero,et al.  Singularity patterns in a chemotaxis model , 1996 .

[19]  Piotr Biler,et al.  Existence and nonexistence of solutions for a model of gravitational interaction of particles, I , 1993 .

[20]  P. Laurençot,et al.  The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in a disc , 2006 .

[21]  N. Mizoguchi Growup of solutions for a semilinear heat equation with supercritical nonlinearity , 2006 .

[22]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[23]  Benoît Perthame,et al.  PDE Models for Chemotactic Movements: Parabolic, Hyperbolic and Kinetic , 2004 .

[24]  Piotr Biler,et al.  A nonlocal singular parabolic problem modelling gravitational interaction of particles , 1998 .

[25]  J. Vázquez,et al.  Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem , 2005 .

[26]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[27]  François Bavaud,et al.  Equilibrium properties of the Vlasov functional: The generalized Poisson-Boltzmann-Emden equation , 1991 .

[28]  Eduard Feireisl,et al.  On convergence to equilibria for the Keller–Segel chemotaxis model , 2007 .

[29]  Self-similar blow-up for a diffusion-attraction problem , 2004, math/0404283.

[30]  Michel Chipot,et al.  Some blowup results for a nonlinear parabolic equation with a gradient term , 1989 .

[31]  G. Wolansky On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity , 1992 .

[32]  G. Wolansky A critical parabolic estimate and application to nonlocal equations arising in chemotaxis , 1997 .

[33]  P. Biler,et al.  Growth and accretion of mass in an astrophysical model, II , 1995 .

[34]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[35]  Jerome Percus,et al.  Nonlinear aspects of chemotaxis , 1981 .

[36]  M. Fila,et al.  Optimal lower bound of the grow-up rate for a supercritical parabolic equation , 2006 .

[37]  V. Galaktionov,et al.  Composite structure of global unbounded solutions of nonlinear heat equations with critical Sobolev exponents , 2003 .

[38]  Leo P. Kadanoff,et al.  Diffusion, attraction and collapse , 1999 .

[39]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[40]  T. Senba Blowup in infinite time of radial solutions for a parabolic–elliptic system in high-dimensional Euclidean spaces , 2009 .

[41]  José A. Carrillo,et al.  Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  Pavol Quittner,et al.  Superlinear Parabolic Problems , 2007, Birkhäuser Advanced Texts Basler Lehrbücher.

[44]  Victor A. Galaktionov,et al.  Rate of Approach to a Singular Steady State in Quasilinear Reaction-Diffusion Equations , 1998 .

[45]  P. Laurençot,et al.  The 8π‐problem for radially symmetric solutions of a chemotaxis model in the plane , 2006 .

[46]  J. V. Hurley,et al.  Chemotaxis , 2005, Infection.

[47]  Toshitaka Nagai,et al.  Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains , 2001 .