Generalizing the Mahalanobis distance via density kernels

The Mahalanobis distance (MD) is a distance widely used in Statistics, Machine Learning and Pattern Recognition. When the data come from a Gaussian distribution, the MD uses the covariance matrix to evaluate the distance between a data point and the distribution mean. In this paper, we generalize the MD for general unimodal distributions, introducing a particular class of Mercer kernel, the density kernel, based on the underlying data density. Density kernels induce distances that generalize the MD and that are useful when data do not fit to the Gaussian distribution. We study the theoretical properties of the proposed distance and show its performance on a variety of artificial and real data analysis problems.

[1]  Javier González,et al.  On the Generalization of the Mahalanobis Distance , 2013, CIARP.

[2]  Luís Torgo,et al.  Data Mining with R: Learning with Case Studies , 2010 .

[3]  Javier M. Moguerza,et al.  A Naive Solution to the One-Class Problem and Its Extension to Kernel Methods , 2005, CIARP.

[4]  Hans-Peter Kriegel,et al.  A survey on unsupervised outlier detection in high‐dimensional numerical data , 2012, Stat. Anal. Data Min..

[5]  L. Haan,et al.  Extreme value theory , 2006 .

[6]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[7]  D. Massart,et al.  The Mahalanobis distance , 2000 .

[8]  Javier M. Moguerza,et al.  Estimation of high-density regions using one-class neighbor machines , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Eric Schmitt,et al.  Finding multivariate outliers with FastPCS , 2014, Comput. Stat. Data Anal..

[10]  David J. Olive,et al.  Robust Covariance Matrix Estimation with Canonical Correlation Analysis , 2012 .

[11]  Pradeep Ravikumar,et al.  Sparse inverse covariance matrix estimation using quadratic approximation , 2011, MLSLP.

[12]  Steven M. Lalonde,et al.  A First Course in Multivariate Statistics , 1997, Technometrics.

[13]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Peter Filzmoser,et al.  Outlier identification in high dimensions , 2008, Comput. Stat. Data Anal..

[15]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .