Correlation with a limited set of behavioral niches explains the convergence of somatic morphology in mygalomorph spiders

Abstract Understanding the drivers of morphological convergence requires investigation into its relationship with behavior and niche space, and such investigations in turn provide insights into evolutionary dynamics, functional morphology, and life history. Mygalomorph spiders (trapdoor spiders and their kin) have long been associated with high levels of morphological homoplasy, and many convergent features can be intuitively associated with different behavioral niches. Using genus‐level phylogenies based on recent genomic studies and a newly assembled matrix of discrete behavioral and somatic morphological characters, we reconstruct the evolution of burrowing behavior in the Mygalomorphae, compare the influence of behavior and evolutionary history on somatic morphology, and test hypotheses of correlated evolution between specific morphological features and behavior. Our results reveal the simplicity of the mygalomorph adaptive landscape, with opportunistic, web‐building taxa at one end, and burrowing/nesting taxa with structurally modified burrow entrances (e.g., a trapdoor) at the other. Shifts in behavioral niche, in both directions, are common across the evolutionary history of the Mygalomorphae, and several major clades include taxa inhabiting both behavioral extremes. Somatic morphology is heavily influenced by behavior, with taxa inhabiting the same behavioral niche often more similar morphologically than more closely related but behaviorally divergent taxa, and we were able to identify a suite of 11 somatic features that show significant correlation with particular behaviors. We discuss these findings in light of the function of particular morphological features, niche dynamics within the Mygalomorphae, and constraints on the mygalomorph adaptive landscape relative to other spiders.

[1]  J. Beaulieu,et al.  Reducing the biases in false correlations between discrete characters. , 2022, Systematic biology.

[2]  Jeremy D. Wilson,et al.  Chronogram or phylogram for ancestral state estimation? Model‐fit statistics indicate the branch lengths underlying a binary character's evolution , 2022, Methods in Ecology and Evolution.

[3]  P. Berliner,et al.  Air Temperature and Humidity at the Bottom of Desert Wolf Spider Burrows Are Not Affected by Surface Conditions , 2021, Insects.

[4]  A. Decae,et al.  Descriptions of four new trapdoor spider species in the subfamily Ummidiinae from Thailand (Araneae, Mygalomorphae, Halonoproctidae). , 2021, Zootaxa.

[5]  R. Netto,et al.  Neoichnology of mygalomorph spiders: Improving the recognition of spider burrows in the geological record , 2021, Journal of South American Earth Sciences.

[6]  K. Gruber,et al.  Diversification of the mygalomorph spider genus Aname (Araneae: Anamidae) across the Australian arid zone: tracing the evolution and biogeography of a continent-wide radiation. , 2021, Molecular phylogenetics and evolution.

[7]  Dimitar Dimitrov,et al.  Converging on the orb: denser taxon sampling elucidates spider phylogeny and new analytical methods support repeated evolution of the orb web , 2020, Cladistics : the international journal of the Willi Hennig Society.

[8]  Hannah M. Wood,et al.  Interrogating Genomic-Scale Data to Resolve Recalcitrant Nodes in the Spider Tree of Life , 2020, Molecular biology and evolution.

[9]  Hannah M. Wood,et al.  Sequence-capture phylogenomics of true spiders reveals convergent evolution of respiratory systems. , 2020, Systematic biology.

[10]  S. Wroe,et al.  Decoupling Functional and Morphological Convergence, the Study Case of Fossorial Mammalia , 2020, Frontiers in Earth Science.

[11]  C. Sheard,et al.  Macroevolutionary convergence connects morphological form to ecological function in birds , 2020, Nature Ecology & Evolution.

[12]  J. Bond,et al.  Phylogenetic Systematics and Evolution of the Spider Infraorder Mygalomorphae Using Genomic Scale Data. , 2019, Systematic biology.

[13]  Jonas O. Wolff,et al.  Evolution of aerial spider webs coincided with repeated structural optimization of silk anchorages , 2019, Evolution; international journal of organic evolution.

[14]  J. Bond,et al.  Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci , 2019, PeerJ.

[15]  Emmanuel Paradis,et al.  ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..

[16]  S. Ceccarelli,et al.  The Grass was Greener: Repeated Evolution of Specialized Morphologies and Habitat Shifts in Ghost Spiders Following Grassland Expansion in South America , 2018, Systematic biology.

[17]  M. Rix,et al.  Phylogenetic relationships of the Australasian open-holed trapdoor spiders (Araneae: Mygalomorphae: Nemesiidae: Anaminae): multi-locus molecular analyses resolve the generic classification of a highly diverse fauna , 2018 .

[18]  A. Austin,et al.  Conservation systematics of the shield-backed trapdoor spiders of the nigrum-group (Mygalomorphae, Idiopidae, Idiosoma): integrative taxonomy reveals a diverse and threatened fauna from south-western Australia , 2018, ZooKeys.

[19]  J. Bond,et al.  Phylogenomic reclassification of the world’s most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution , 2018, Scientific Reports.

[20]  Hannah M. Wood,et al.  The spider tree of life: phylogeny of Araneae based on target‐gene analyses from an extensive taxon sampling , 2017, Cladistics : the international journal of the Willi Hennig Society.

[21]  F. PÉREZ-MILES,et al.  Morphology and evolution of scopula, pseudoscopula and claw tufts in Mygalomorphae (Araneae) , 2017, Zoomorphology.

[22]  A. Austin,et al.  The Australasian spiny trapdoor spiders of the family Idiopidae (Mygalomorphae : Arbanitinae): a relimitation and revision at the generic level , 2017, Invertebrate Systematics.

[23]  A. Austin,et al.  Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). , 2017, Molecular phylogenetics and evolution.

[24]  F. PÉREZ-MILES,et al.  Behavior and Biology of Mygalomorphae , 2017 .

[25]  Jonas O. Wolff,et al.  Attachment Structures and Adhesive Secretions in Arachnids , 2016, Biologically-Inspired Systems.

[26]  Graeme T. Lloyd,et al.  Estimating morphological diversity and tempo with discrete character‐taxon matrices: implementation, challenges, progress, and future directions , 2016 .

[27]  S. Paz ECOLOGIA Y ASPECTOS DEL COMPORTAMIENTO EN LINOTHELE SP. (ARANEAE, DIPLURIDAE) , 2016 .

[28]  C Tristan Stayton,et al.  What does convergent evolution mean? The interpretation of convergence and its implications in the search for limits to evolution , 2015, Interface Focus.

[29]  Jonas O. Wolff,et al.  Hunting Without a Web: How Lycosoid Spiders Subdue their Prey , 2015 .

[30]  E. Pianka,et al.  Functional traits, convergent evolution, and periodic tables of niches , 2015, Ecology letters.

[31]  R. Motani,et al.  Trophic convergence drives morphological convergence in marine tetrapods , 2015, Biology Letters.

[32]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[33]  R. FitzJohn,et al.  The unsolved challenge to phylogenetic correlation tests for categorical characters. , 2015, Systematic biology.

[34]  A. Decae,et al.  Synonymy of the Trapdoor Spider Genera Cyrtauchenius Thorell, 1869 and Amblyocarenum Simon, 1892 Reconsidered (Araneae, Mygalomorphae, Cyrtaucheniidae) , 2014 .

[35]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[36]  J. Hils Neoichnology of the Burrowing Spiders Gorgyrella inermis (Araneae: Mygalomorphae) and Hogna lenta (Araneae: Araneomorphae) , 2014 .

[37]  R. Bertani,et al.  Morphology, evolution and usage of urticating setae by tarantulas (Araneae: Theraphosidae) , 2013 .

[38]  Wolfgang Nentwig,et al.  The Great Silk Alternative: Multiple Co-Evolution of Web Loss and Sticky Hairs in Spiders , 2013, PloS one.

[39]  W. Eberhard,et al.  Web construction of Linothele macrothelifera (Araneae: Dipluridae) , 2013 .

[40]  J. Bond Phylogenetic treatment and taxonomic revision of the trapdoor spider genus Aptostichus Simon (Araneae, Mygalomorphae, Euctenizidae) , 2012, ZooKeys.

[41]  Brian C. O'Meara,et al.  treePL: divergence time estimation using penalized likelihood for large phylogenies , 2012, Bioinform..

[42]  Jonas O. Wolff,et al.  Comparative morphology of pretarsal scopulae in eleven spider families. , 2012, Arthropod structure & development.

[43]  J. Bond,et al.  A Reconsideration of the Classification of the Spider Infraorder Mygalomorphae (Arachnida: Araneae) Based on Three Nuclear Genes and Morphology , 2012, PloS one.

[44]  G. R. McGhee Convergent Evolution: Limited Forms Most Beautiful , 2011 .

[45]  J. Bond,et al.  Species Delimitation and Phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): Cryptic Diversity in North American Tarantulas , 2011, PloS one.

[46]  J. Losos,et al.  CONVERGENCE, ADAPTATION, AND CONSTRAINT , 2011, Evolution; international journal of organic evolution.

[47]  Y. Lubin,et al.  Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae) , 2011, Naturwissenschaften.

[48]  Klaus Peter Schliep,et al.  phangorn: phylogenetic analysis in R , 2010, Bioinform..

[49]  H. Seligmann Positive correlations between molecular and morphological rates of evolution. , 2010, Journal of theoretical biology.

[50]  S. Morris Evolution: like any other science it is predictable. , 2010, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[51]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[52]  C. T. Stayton Is convergence surprising? An examination of the frequency of convergence in simulated datasets. , 2008, Journal of theoretical biology.

[53]  P. Sereno Logical basis for morphological characters in phylogenetics , 2007, Cladistics : the international journal of the Willi Hennig Society.

[54]  J. Bond,et al.  Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification. , 2006, Molecular phylogenetics and evolution.

[55]  J. Leroy,et al.  NOTES ON THE NATURAL HISTORY OF A TRAPDOOR SPIDER ANCYLOTRYPA SIMON (ARANEAE, CYRTAUCHENIIDAE) THAT CONSTRUCTS A SPHERICAL BURROW PLUG , 2005 .

[56]  J. Bond Systematics of the Californian euctenizine spider genus Apomastus (Araneae:Mygalomorphae:Cyrtaucheniidae): the relationship between molecular and morphological taxonomy , 2004 .

[57]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[58]  J. Bond,et al.  Phylogeny and taxonomy of thegenera of south-western North American Euctenizinae trapdoor spiders and their relatives (Araneae: Mygalomorphae, Cyrtaucheniidae) , 2002 .

[59]  W. Maddison,et al.  Testing character correlation using pairwise comparisons on a phylogeny. , 2000, Journal of theoretical biology.

[60]  M. Pagel The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete Characters on Phylogenies , 1999 .

[61]  S. Nee,et al.  Inference from binary comparative data , 1995 .

[62]  J. Bond,et al.  Observations on the Natural History of an Ummidia Trapdoor Spider from Costa Rica (Araneae, Ctenizidae) , 1995 .

[63]  F. Coyle A revision of the funnelweb mygalomorph spider subfamily Ischnothelinae (Araneae, Dipluridae). Bulletin of the AMNH ; no. 226 , 1995 .

[64]  M. Pagel Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[65]  F. Coyle,et al.  Natural History of the Californian Trapdoor Spider Genus Aliatypus (Araneae, Antrodiaetidae) , 1994 .

[66]  P. Goloboff A reanalysis of mygalomorph spider families (Araneae) , 1993 .

[67]  R. Bennett,et al.  Retreat architecture and construction behaviour of an East African idiopine trapdoor spider (Araneae, Idiopidae) , 1992 .

[68]  H. W. Levi,et al.  Systematics and Evolution of Spiders (Araneae) , 1991 .

[69]  A. Mayo Door construction behavior of the mygalomorph spider family Antrodiaetidae and one member of the family Ctenizidae (Araneae, Mygalomorphae) , 1988 .

[70]  F. Coyle A revision of the American funnel-web mygalomorph spider genus Euagrus (Araneae, Dipluridae). Bulletin of the AMNH ; v. 187, article 3 , 1988 .

[71]  David L. Swofford,et al.  Reconstructing ancestral character states under Wagner parsimony , 1987 .

[72]  R. Raven A Revision of the Spider Genus Sason Simon (Sasoninae, Barychelidae, Mygalomorphae) and Its Historical Biogeography , 1986 .

[73]  Main Further studies on the systematics for Ctenizid trapdoor spiders: a review of the Australian genera (Araneae : Mygalomorphae : Ctenizidae) , 1985 .

[74]  R. Raven The spider infraorder Mygalomorphae (Araneae): cladistics and systematics , 1985 .

[75]  J. Cloudsley-Thompson Desert adaptations in spiders , 1983 .

[76]  R. Raven Systematics of the Australian curtain-web spiders (Ischnothelinae : Dipluridae : Chelicerata) , 1983 .

[77]  F. Coyle Systematics of the Trapdoor Spider Genus Aliatypus (Araneae: Antrodiaetidae) , 1974 .

[78]  J. Gower A General Coefficient of Similarity and Some of Its Properties , 1971 .

[79]  F. Coyle Systematics and natural history of the mygalomorph spider genus Antrodiaetus and related genera (Araneae: Antrodiaetidae) , 1971 .

[80]  H. W. Levi ADAPTATIONS OF RESPIRATORY SYSTEMS OF SPIDERS , 1967, Evolution; international journal of organic evolution.

[81]  G. A. Horridge,et al.  Animal species and evolution. , 1964 .

[82]  A. Gray,et al.  I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .

[83]  Main Biology of Aganippine trapdoor spiders (Mygalomorphae: Ctenizidae) , 1957 .

[84]  S. A. Barnett,et al.  The major features of evolution , 1955 .

[85]  T. Savory American Spiders , 1951, Nature.

[86]  R. Chamberlin,et al.  On Some Nearctic Mygalomorph Spiders , 1945 .