Correlation with a limited set of behavioral niches explains the convergence of somatic morphology in mygalomorph spiders
暂无分享,去创建一个
M. Rix | M. Harvey | J. Bond | M. Ramírez | Jeremy D. Wilson
[1] J. Beaulieu,et al. Reducing the biases in false correlations between discrete characters. , 2022, Systematic biology.
[2] Jeremy D. Wilson,et al. Chronogram or phylogram for ancestral state estimation? Model‐fit statistics indicate the branch lengths underlying a binary character's evolution , 2022, Methods in Ecology and Evolution.
[3] P. Berliner,et al. Air Temperature and Humidity at the Bottom of Desert Wolf Spider Burrows Are Not Affected by Surface Conditions , 2021, Insects.
[4] A. Decae,et al. Descriptions of four new trapdoor spider species in the subfamily Ummidiinae from Thailand (Araneae, Mygalomorphae, Halonoproctidae). , 2021, Zootaxa.
[5] R. Netto,et al. Neoichnology of mygalomorph spiders: Improving the recognition of spider burrows in the geological record , 2021, Journal of South American Earth Sciences.
[6] K. Gruber,et al. Diversification of the mygalomorph spider genus Aname (Araneae: Anamidae) across the Australian arid zone: tracing the evolution and biogeography of a continent-wide radiation. , 2021, Molecular phylogenetics and evolution.
[7] Dimitar Dimitrov,et al. Converging on the orb: denser taxon sampling elucidates spider phylogeny and new analytical methods support repeated evolution of the orb web , 2020, Cladistics : the international journal of the Willi Hennig Society.
[8] Hannah M. Wood,et al. Interrogating Genomic-Scale Data to Resolve Recalcitrant Nodes in the Spider Tree of Life , 2020, Molecular biology and evolution.
[9] Hannah M. Wood,et al. Sequence-capture phylogenomics of true spiders reveals convergent evolution of respiratory systems. , 2020, Systematic biology.
[10] S. Wroe,et al. Decoupling Functional and Morphological Convergence, the Study Case of Fossorial Mammalia , 2020, Frontiers in Earth Science.
[11] C. Sheard,et al. Macroevolutionary convergence connects morphological form to ecological function in birds , 2020, Nature Ecology & Evolution.
[12] J. Bond,et al. Phylogenetic Systematics and Evolution of the Spider Infraorder Mygalomorphae Using Genomic Scale Data. , 2019, Systematic biology.
[13] Jonas O. Wolff,et al. Evolution of aerial spider webs coincided with repeated structural optimization of silk anchorages , 2019, Evolution; international journal of organic evolution.
[14] J. Bond,et al. Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci , 2019, PeerJ.
[15] Emmanuel Paradis,et al. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..
[16] S. Ceccarelli,et al. The Grass was Greener: Repeated Evolution of Specialized Morphologies and Habitat Shifts in Ghost Spiders Following Grassland Expansion in South America , 2018, Systematic biology.
[17] M. Rix,et al. Phylogenetic relationships of the Australasian open-holed trapdoor spiders (Araneae: Mygalomorphae: Nemesiidae: Anaminae): multi-locus molecular analyses resolve the generic classification of a highly diverse fauna , 2018 .
[18] A. Austin,et al. Conservation systematics of the shield-backed trapdoor spiders of the nigrum-group (Mygalomorphae, Idiopidae, Idiosoma): integrative taxonomy reveals a diverse and threatened fauna from south-western Australia , 2018, ZooKeys.
[19] J. Bond,et al. Phylogenomic reclassification of the world’s most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution , 2018, Scientific Reports.
[20] Hannah M. Wood,et al. The spider tree of life: phylogeny of Araneae based on target‐gene analyses from an extensive taxon sampling , 2017, Cladistics : the international journal of the Willi Hennig Society.
[21] F. PÉREZ-MILES,et al. Morphology and evolution of scopula, pseudoscopula and claw tufts in Mygalomorphae (Araneae) , 2017, Zoomorphology.
[22] A. Austin,et al. The Australasian spiny trapdoor spiders of the family Idiopidae (Mygalomorphae : Arbanitinae): a relimitation and revision at the generic level , 2017, Invertebrate Systematics.
[23] A. Austin,et al. Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). , 2017, Molecular phylogenetics and evolution.
[24] F. PÉREZ-MILES,et al. Behavior and Biology of Mygalomorphae , 2017 .
[25] Jonas O. Wolff,et al. Attachment Structures and Adhesive Secretions in Arachnids , 2016, Biologically-Inspired Systems.
[26] Graeme T. Lloyd,et al. Estimating morphological diversity and tempo with discrete character‐taxon matrices: implementation, challenges, progress, and future directions , 2016 .
[27] S. Paz. ECOLOGIA Y ASPECTOS DEL COMPORTAMIENTO EN LINOTHELE SP. (ARANEAE, DIPLURIDAE) , 2016 .
[28] C Tristan Stayton,et al. What does convergent evolution mean? The interpretation of convergence and its implications in the search for limits to evolution , 2015, Interface Focus.
[29] Jonas O. Wolff,et al. Hunting Without a Web: How Lycosoid Spiders Subdue their Prey , 2015 .
[30] E. Pianka,et al. Functional traits, convergent evolution, and periodic tables of niches , 2015, Ecology letters.
[31] R. Motani,et al. Trophic convergence drives morphological convergence in marine tetrapods , 2015, Biology Letters.
[32] A. von Haeseler,et al. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.
[33] R. FitzJohn,et al. The unsolved challenge to phylogenetic correlation tests for categorical characters. , 2015, Systematic biology.
[34] A. Decae,et al. Synonymy of the Trapdoor Spider Genera Cyrtauchenius Thorell, 1869 and Amblyocarenum Simon, 1892 Reconsidered (Araneae, Mygalomorphae, Cyrtaucheniidae) , 2014 .
[35] Alexandros Stamatakis,et al. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..
[36] J. Hils. Neoichnology of the Burrowing Spiders Gorgyrella inermis (Araneae: Mygalomorphae) and Hogna lenta (Araneae: Araneomorphae) , 2014 .
[37] R. Bertani,et al. Morphology, evolution and usage of urticating setae by tarantulas (Araneae: Theraphosidae) , 2013 .
[38] Wolfgang Nentwig,et al. The Great Silk Alternative: Multiple Co-Evolution of Web Loss and Sticky Hairs in Spiders , 2013, PloS one.
[39] W. Eberhard,et al. Web construction of Linothele macrothelifera (Araneae: Dipluridae) , 2013 .
[40] J. Bond. Phylogenetic treatment and taxonomic revision of the trapdoor spider genus Aptostichus Simon (Araneae, Mygalomorphae, Euctenizidae) , 2012, ZooKeys.
[41] Brian C. O'Meara,et al. treePL: divergence time estimation using penalized likelihood for large phylogenies , 2012, Bioinform..
[42] Jonas O. Wolff,et al. Comparative morphology of pretarsal scopulae in eleven spider families. , 2012, Arthropod structure & development.
[43] J. Bond,et al. A Reconsideration of the Classification of the Spider Infraorder Mygalomorphae (Arachnida: Araneae) Based on Three Nuclear Genes and Morphology , 2012, PloS one.
[44] G. R. McGhee. Convergent Evolution: Limited Forms Most Beautiful , 2011 .
[45] J. Bond,et al. Species Delimitation and Phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): Cryptic Diversity in North American Tarantulas , 2011, PloS one.
[46] J. Losos,et al. CONVERGENCE, ADAPTATION, AND CONSTRAINT , 2011, Evolution; international journal of organic evolution.
[47] Y. Lubin,et al. Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae) , 2011, Naturwissenschaften.
[48] Klaus Peter Schliep,et al. phangorn: phylogenetic analysis in R , 2010, Bioinform..
[49] H. Seligmann. Positive correlations between molecular and morphological rates of evolution. , 2010, Journal of theoretical biology.
[50] S. Morris. Evolution: like any other science it is predictable. , 2010, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[51] D. Maddison,et al. Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .
[52] C. T. Stayton. Is convergence surprising? An examination of the frequency of convergence in simulated datasets. , 2008, Journal of theoretical biology.
[53] P. Sereno. Logical basis for morphological characters in phylogenetics , 2007, Cladistics : the international journal of the Willi Hennig Society.
[54] J. Bond,et al. Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification. , 2006, Molecular phylogenetics and evolution.
[55] J. Leroy,et al. NOTES ON THE NATURAL HISTORY OF A TRAPDOOR SPIDER ANCYLOTRYPA SIMON (ARANEAE, CYRTAUCHENIIDAE) THAT CONSTRUCTS A SPHERICAL BURROW PLUG , 2005 .
[56] J. Bond. Systematics of the Californian euctenizine spider genus Apomastus (Araneae:Mygalomorphae:Cyrtaucheniidae): the relationship between molecular and morphological taxonomy , 2004 .
[57] Marion Kee,et al. Analysis , 2004, Machine Translation.
[58] J. Bond,et al. Phylogeny and taxonomy of thegenera of south-western North American Euctenizinae trapdoor spiders and their relatives (Araneae: Mygalomorphae, Cyrtaucheniidae) , 2002 .
[59] W. Maddison,et al. Testing character correlation using pairwise comparisons on a phylogeny. , 2000, Journal of theoretical biology.
[60] M. Pagel. The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete Characters on Phylogenies , 1999 .
[61] S. Nee,et al. Inference from binary comparative data , 1995 .
[62] J. Bond,et al. Observations on the Natural History of an Ummidia Trapdoor Spider from Costa Rica (Araneae, Ctenizidae) , 1995 .
[63] F. Coyle. A revision of the funnelweb mygalomorph spider subfamily Ischnothelinae (Araneae, Dipluridae). Bulletin of the AMNH ; no. 226 , 1995 .
[64] M. Pagel. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[65] F. Coyle,et al. Natural History of the Californian Trapdoor Spider Genus Aliatypus (Araneae, Antrodiaetidae) , 1994 .
[66] P. Goloboff. A reanalysis of mygalomorph spider families (Araneae) , 1993 .
[67] R. Bennett,et al. Retreat architecture and construction behaviour of an East African idiopine trapdoor spider (Araneae, Idiopidae) , 1992 .
[68] H. W. Levi,et al. Systematics and Evolution of Spiders (Araneae) , 1991 .
[69] A. Mayo. Door construction behavior of the mygalomorph spider family Antrodiaetidae and one member of the family Ctenizidae (Araneae, Mygalomorphae) , 1988 .
[70] F. Coyle. A revision of the American funnel-web mygalomorph spider genus Euagrus (Araneae, Dipluridae). Bulletin of the AMNH ; v. 187, article 3 , 1988 .
[71] David L. Swofford,et al. Reconstructing ancestral character states under Wagner parsimony , 1987 .
[72] R. Raven. A Revision of the Spider Genus Sason Simon (Sasoninae, Barychelidae, Mygalomorphae) and Its Historical Biogeography , 1986 .
[73] Main. Further studies on the systematics for Ctenizid trapdoor spiders: a review of the Australian genera (Araneae : Mygalomorphae : Ctenizidae) , 1985 .
[74] R. Raven. The spider infraorder Mygalomorphae (Araneae): cladistics and systematics , 1985 .
[75] J. Cloudsley-Thompson. Desert adaptations in spiders , 1983 .
[76] R. Raven. Systematics of the Australian curtain-web spiders (Ischnothelinae : Dipluridae : Chelicerata) , 1983 .
[77] F. Coyle. Systematics of the Trapdoor Spider Genus Aliatypus (Araneae: Antrodiaetidae) , 1974 .
[78] J. Gower. A General Coefficient of Similarity and Some of Its Properties , 1971 .
[79] F. Coyle. Systematics and natural history of the mygalomorph spider genus Antrodiaetus and related genera (Araneae: Antrodiaetidae) , 1971 .
[80] H. W. Levi. ADAPTATIONS OF RESPIRATORY SYSTEMS OF SPIDERS , 1967, Evolution; international journal of organic evolution.
[81] G. A. Horridge,et al. Animal species and evolution. , 1964 .
[82] A. Gray,et al. I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .
[83] Main. Biology of Aganippine trapdoor spiders (Mygalomorphae: Ctenizidae) , 1957 .
[84] S. A. Barnett,et al. The major features of evolution , 1955 .
[85] T. Savory. American Spiders , 1951, Nature.
[86] R. Chamberlin,et al. On Some Nearctic Mygalomorph Spiders , 1945 .