Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery

The problem of classifying an image into different homogeneous regions is viewed as the task of clustering the pixels in the intensity space. In particular, satellite images contain landcover types some of which cover significantly large areas, while some (e.g., bridges and roads) occupy relatively much smaller regions. Detecting regions or clusters of such widely varying sizes presents a challenging task. A modified differential evolution based fuzzy clustering technique, is proposed in this article. Real-coded encoding of the cluster centres is used for this purpose. Results demonstrating the effectiveness of the proposed technique are provided for several synthetic and real life data sets as well as for some benchmark functions. Different landcover regions in remote sensing imagery have also been classified using the proposed technique to establish its efficiency. Statistical significance tests have been performed to establish the superiority of the proposed algorithm.

[1]  Andries Petrus Engelbrecht,et al.  Differential evolution methods for unsupervised image classification , 2005, 2005 IEEE Congress on Evolutionary Computation.

[2]  Ujjwal Maulik,et al.  Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[3]  Sanghamitra Bandyopadhyay,et al.  An efficient technique for superfamily classification of amino acid sequences: feature extraction, fuzzy clustering and prototype selection , 2005, Fuzzy Sets Syst..

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  Rainer Storn,et al.  Minimizing the real functions of the ICEC'96 contest by differential evolution , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[6]  Zelda B. Zabinsky,et al.  Stochastic Adaptive Search for Global Optimization , 2003 .

[7]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[8]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[9]  I. Guyon,et al.  Detecting stable clusters using principal component analysis. , 2003, Methods in molecular biology.

[10]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[11]  Ujjwal Maulik,et al.  Unsupervised Pixel Classification in Satellite Imagery: A Two-stage Fuzzy Clustering Approach , 2008, Fundam. Informaticae.

[12]  A. A. Zhigli︠a︡vskiĭ,et al.  Stochastic Global Optimization , 2007 .

[13]  Sanghamitra Bandyopadhyay,et al.  Pixel classification using variable string genetic algorithms with chromosome differentiation , 2001, IEEE Trans. Geosci. Remote. Sens..

[14]  J. Kennedy,et al.  Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[15]  K. V. Price,et al.  Differential evolution: a fast and simple numerical optimizer , 1996, Proceedings of North American Fuzzy Information Processing.

[16]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[17]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[18]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[19]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[20]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[21]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[22]  Michael K. Ng,et al.  A fuzzy k-modes algorithm for clustering categorical data , 1999, IEEE Trans. Fuzzy Syst..

[23]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[25]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[26]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[27]  Brian Everitt,et al.  Cluster analysis , 1974 .

[28]  Ujjwal Maulik,et al.  An improved algorithm for clustering gene expression data , 2007, Bioinform..

[29]  David G. Wilson,et al.  2. Constrained Optimization , 2005 .

[30]  Andries P. Engelbrecht,et al.  Effects of swarm size on Cooperative Particle Swarm Optimisers , 2001 .

[31]  David H. Ackley,et al.  An empirical study of bit vector function optimization , 1987 .

[32]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[33]  P. Song,et al.  Clustering Categorical Data Based on Distance Vectors , 2006 .

[34]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[35]  Sanghamitra Bandyopadhyay Simulated annealing using a reversible jump Markov chain Monte Carlo algorithm for fuzzy clustering , 2005, IEEE Transactions on Knowledge and Data Engineering.

[36]  Ujjwal Maulik,et al.  Performance Evaluation of Some Clustering Algorithms and Validity Indices , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Ujjwal Maulik,et al.  Genetic algorithm-based clustering technique , 2000, Pattern Recognit..

[38]  Ujjwal Maulik,et al.  A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification , 2005, Fuzzy Sets Syst..

[39]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.