SEMI-NONPARAMETRIC ESTIMATES OF THE DEMAND FOR MONEY IN THE UNITED STATES

This paper focuses on the demand for money in the United States in the context of two globally flexible functional forms—the Fourier and the asymptotically ideal model (AIM)—estimated subject to full regularity, using methods suggested over 20 years ago. We provide a comparison in terms of violations of the regularity conditions for consumer maximization and in terms of output in the form of a full set of elasticities. We also provide a policy perspective, using (for the first time) parameter estimates that are consistent with global regularity, in that a very strong case can be made for abandoning the simple-sum approach to monetary aggregation, on the basis of the low elasticities of substitution among the components of the popular M2 aggregate of money.

[1]  William A. Barnett,et al.  The three-dimensional global properties of the minflex laurent, generalized leontief, and translog flexible functional forms , 1985 .

[2]  Israel Zang,et al.  Nine kinds of quasiconcavity and concavity , 1981 .

[3]  Adrian R. Fleissig,et al.  Monetary Aggregation and the Demand for Assets , 1997 .

[4]  Apostolos Serletis The Demand for Money: Theoretical and Empirical Approaches , 2001 .

[5]  William A. Barnett,et al.  The Muntz-Szatz demand system: An application of a globally well behaved series expansion , 1983 .

[6]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[7]  William A. Barnett,et al.  Semi-parametric Estimation of the Asymptotically Ideal Model: The AIM Demand System , 2004 .

[8]  William A. Barnett,et al.  The minflex-laurent translog flexible functional form , 1985 .

[9]  William A. Barnett,et al.  Fellow’s Opinion Article: Tastes and Technology: Curvature is not Sufficient for Regularity , 2001 .

[10]  Apostolos Serletis,et al.  Semi-Non-Parametric Estimates of Substitution for Canadian Monetary Assets , 2002 .

[11]  H. Varian Non-parametric Tests of Consumer Behaviour , 1983 .

[12]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[13]  V. Chetty On Measuring the Nearness of the Near-Moneys , 1969 .

[14]  William A. Barnett,et al.  Seminonparametric Bayesian estimation of the asymptotically ideal production model , 1991 .

[15]  A. Gallant,et al.  On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form , 1981 .

[16]  William A. Barnett,et al.  Regularity of the Generalized Quadratic Production Model: A Counterexample , 2003 .

[17]  Gene H. Golub,et al.  Imposing curvature restrictions on flexible functional forms , 1984 .

[18]  Travis D. Nesmith,et al.  Building New Monetary Services Indexes: Concepts, Data and Methods , 1997 .

[19]  A. Zellner An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias , 1962 .

[20]  Travis D. Nesmith,et al.  Special report: The monetary services index project of the Federal Reserve Bank of St. Louis: building new monetary services indexes: concepts, data and methods , 1997 .

[21]  I. Fisher,et al.  The Making of Index Numbers: A Study of Their Varieties, Tests, and Reliability , 1923 .

[22]  Apostolos Serletis The Demand for Money: Theoretical and Empirical Approaches , 2001 .

[23]  William A. Barnett,et al.  Consumer Theory and the Demand for Money , 2000 .

[24]  Richard G. Anderson,et al.  Confidence Intervals for Elasticity Estimators in Translog Models , 1986 .

[25]  William A. Barnett,et al.  New Indices of Money Supply and the Flexible Laurent Demand System , 1983 .

[26]  Apostolos Serletis,et al.  An empirical comparison of flexible demand system functional forms , 2001 .

[27]  Adrian R. Fleissig,et al.  A dynamic asymptotically ideal model of money demand , 1996 .

[28]  A. Ronald Gallant,et al.  On unification of the asymptotic theory of nonlinear econometric models , 1982 .

[29]  H. Varian The Nonparametric Approach to Demand Analysis , 1982 .

[30]  W. Barnett,et al.  The Theory of Monetary Aggregation , 2000 .

[31]  Adrian R. Fleissig,et al.  Dynamic Asymptotically Ideal Models and Finite Approximation , 1997 .

[32]  William A. Barnett,et al.  The Global Properties of the Miniflex Laurent, Generalized Leontief, and Translog Flexible Functional Forms , 1985 .

[33]  William A. Barnett,et al.  The Müntz-Szatz demand system , 1983 .

[34]  H. Uzawa,et al.  Production Functions with Constant Elasticities of Substitution , 1962 .

[35]  William A. Barnett,et al.  The global properties of the two minflex Laurent flexible functional forms , 1987 .

[36]  A. Gallant,et al.  Unbiased determination of production technologies , 1982 .

[37]  Brian J. Eastwood,et al.  Adaptive Rules for Seminonparametric Estimators That Achieve Asymptotic Normality , 1991, Econometric Theory.

[38]  L. Drake,et al.  A Semi-Nonparametric Approach to the Demand for UK Monetary Assets , 2003 .