A new way of counting the column-convex polyominoes by perimeter
暂无分享,去创建一个
[1] H. Temperley. Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .
[2] Gérard Viennot. Enumerative combinatorics and algebraic languages , 1985, FCT.
[3] Anthony J. Guttmann,et al. Exact solution of the row-convex polygon perimeter generating function , 1990 .
[4] George Polya,et al. On the number of certain lattice polygons , 1969 .
[5] Jean Berstel,et al. Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.
[6] M. Bousquet-Mélou,et al. Convex polyominoes and algebraic languages , 1992 .
[7] A. Guttmann,et al. Exact solution of the staircase and row-convex polygon perimeter and area generating function , 1990 .
[8] K. Lin,et al. Perimeter and Area Generating Functions of the Staircase and Row-Convex Polygons on the Rectangular Lattice , 1991 .
[9] Marie-Pierre Delest,et al. Generating functions for column-convex polyominoes , 1988, J. Comb. Theory, Ser. A.
[10] K. Lin. Perimeter generating function for row-convex polygons on the rectangular lattice , 1990 .
[11] Mireille Bousquet-Mélou,et al. A method for the enumeration of various classes of column-convex polygons , 1996, Discret. Math..
[12] Ira M. Gessel,et al. A combinatorial proof of the multivariable lagrange inversion formula , 1987, J. Comb. Theory, Ser. A.
[13] Gérard Viennot,et al. Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..
[14] Marcel Paul Schützenberger,et al. On Context-Free Languages and Push-Down Automata , 1963, Inf. Control..