A new way of counting the column-convex polyominoes by perimeter

We introduce a new class of plane figures: the sequences of tailed column-convex polyominoes (for short: stapoes). Let G(x, y) and I(x, y) denote the perimeter generating functions for column-convex polyominoes and stapoes, respectively. It will be clear from the definitions that G(x, y) is a simple fraction of I(x, y). But this latter function can be DSV-computed by solving just one quadratic equation (and not a system of quadratic equations). Thus the formula for G(x, y) can be obtained with ease.

[1]  H. Temperley Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .

[2]  Gérard Viennot Enumerative combinatorics and algebraic languages , 1985, FCT.

[3]  Anthony J. Guttmann,et al.  Exact solution of the row-convex polygon perimeter generating function , 1990 .

[4]  George Polya,et al.  On the number of certain lattice polygons , 1969 .

[5]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[6]  M. Bousquet-Mélou,et al.  Convex polyominoes and algebraic languages , 1992 .

[7]  A. Guttmann,et al.  Exact solution of the staircase and row-convex polygon perimeter and area generating function , 1990 .

[8]  K. Lin,et al.  Perimeter and Area Generating Functions of the Staircase and Row-Convex Polygons on the Rectangular Lattice , 1991 .

[9]  Marie-Pierre Delest,et al.  Generating functions for column-convex polyominoes , 1988, J. Comb. Theory, Ser. A.

[10]  K. Lin Perimeter generating function for row-convex polygons on the rectangular lattice , 1990 .

[11]  Mireille Bousquet-Mélou,et al.  A method for the enumeration of various classes of column-convex polygons , 1996, Discret. Math..

[12]  Ira M. Gessel,et al.  A combinatorial proof of the multivariable lagrange inversion formula , 1987, J. Comb. Theory, Ser. A.

[13]  Gérard Viennot,et al.  Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..

[14]  Marcel Paul Schützenberger,et al.  On Context-Free Languages and Push-Down Automata , 1963, Inf. Control..