Acquired Clustering Properties and Solution of Certain Saddle Point Systems

Many mathematical models involve flow equations characterized by nonconstant viscosity, and a Stokes-type problem with variable viscosity coefficient arises. Appropriate block diagonal preconditioners for the resulting algebraic saddle point linear system produce well-clustered spectra, except for a few interior isolated eigenvalues which may tend to approach zero. These outliers affect the convergence of Krylov subspace system solvers, causing a possibly long stagnation phase. In this paper we characterize the influence of the spectral properties of the preconditioner on the final spectrum of the saddle point matrix by providing accurate spectral intervals depending on the involved operators. Moreover, we suggest that the stagnation phase may be completely eliminated by means of an augmentation procedure, where approximate spectral eigenspace information can be injected. We show that the modifications to the original code are minimal and can be easily implemented. Numerical experiments confirm our findings.

[1]  Maxim A. Olshanskii,et al.  An Iterative Method for the Stokes-Type Problem with Variable Viscosity , 2009, SIAM J. Sci. Comput..

[2]  Ragnar Winther,et al.  A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..

[3]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[4]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[5]  S. MacLachlan,et al.  On iterative methods for the incompressible Stokes problem , 2011 .

[6]  Michel Bercovier,et al.  A finite-element method for incompressible non-Newtonian flows , 1980 .

[7]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[8]  E. C. Bingham Fluidity And Plasticity , 1922 .

[9]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[10]  Georg Stadler,et al.  Parallel scalable adjoint-based adaptive solution of variable-viscosity Stokes flow problems , 2009 .

[11]  Maxim A. Olshanskii,et al.  Analysis of a Stokes interface problem , 2006, Numerische Mathematik.

[12]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[13]  Ulrich R. Christensen,et al.  3‐D Convection With Variable Viscosity , 1991 .

[14]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[15]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[16]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[17]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[18]  Paul J. Tackley,et al.  Effects of strongly variable viscosity on three‐dimensional compressible convection in planetary mantles , 1996 .

[19]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[20]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[21]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[24]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[25]  T. Papanastasiou Flows of Materials with Yield , 1987 .

[26]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[27]  K. R. Rajagopal,et al.  Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities , 2003, Math. Comput. Simul..

[28]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[29]  Frédéric Guyomarc'h,et al.  A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..