A hybrid IGAFEM/IGABEM formulation for two-dimensional stationary magnetic and magneto-mechanical field problems

Abstract Isogeometric Analysis (IGA) can bridge the gap between geometrical and numerical modelling. To this end, the same functions used in Computer Aided Design are applied to represent geometry and approximate field variables in the numerical model. The concept has already been implemented to solve field problems using Finite Element (FEM) and Boundary Element Methods (BEM) but coupling of both methods has not been applied. In the current work an isogeometric FEM/BEM coupling is proposed and applied to two-dimensional stationary magnetic field problems. While FEM is used to model magnetisable bodies allowing for heterogeneous structures and non-linear constitutive behaviour, the BEM domain accounts for the surrounding free space. Both methods are coupled on the surface of the magnetisable body. Due to this hybrid IGAFEM/-BEM approach, no meshing of free space is necessary and truncation errors are avoided for problems to be solved on open, infinite or semi-infinite domains. Once the solution for the magnetic problem is obtained using the hybrid method, IGAFEM is used to solve a magneto-mechanical field problem with one-sided coupling in a subdomain of the magnetic problem. This one-sided coupling is realised by a magnetic stress tensor computed from the solution of the stationary magnetic field problem. From the comparison of error norms and convergence rates for NURBS and discretisations based on Lagrangian polynomials, smaller errors and similar convergence rates are found for the proposed method for the same polynomial order of the basis functions and a comparable mesh size.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  Massimo Guiggiani,et al.  ERROR INDICATORS FOR ADAPTIVE MESH REFINEMENT IN THE BOUNDARY ELEMENT METHOD - A NEW APPROACH , 1990 .

[3]  Lothar Gaul,et al.  Boundary element methods for engineers and scientists , 2003 .

[4]  Elaine Cohen,et al.  Volumetric parameterization of complex objects by respecting multiple materials , 2010, Comput. Graph..

[5]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[6]  A. Engel,et al.  On the electromagnetic force on a polarizable body , 2002 .

[7]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[8]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[9]  Kang Li,et al.  Isogeometric analysis and shape optimization via boundary integral , 2011, Comput. Aided Des..

[10]  Thomas J. R. Hughes,et al.  Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..

[11]  Nicolas Triantafyllidis,et al.  Experiments and modeling of iron-particle-filled magnetorheological elastomers , 2012 .

[12]  Steffen Marburg,et al.  Structural‐acoustic coupling on non‐conforming meshes with quadratic shape functions , 2012 .

[13]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[14]  F. Rizzo,et al.  An integral equation formulation of three dimensional anisotropic elastostatic boundary value problems , 1973 .

[15]  Gérard A. Maugin,et al.  Electrodynamics Of Continua , 1990 .

[16]  P. Silvester,et al.  Exterior finite elements for 2-dimensional field problems with open boundaries , 1977 .

[17]  Steffen Marburg,et al.  FEM-BEM-coupling and structural-acoustic sensitivity analysis for shell geometries , 2005 .

[18]  T. Belytschko,et al.  X‐FEM in isogeometric analysis for linear fracture mechanics , 2011 .

[19]  Markus Kästner,et al.  XFEM modeling and homogenization of magnetoactive composites , 2013 .

[20]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[21]  Giancarlo Sangalli,et al.  Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations , 2012, J. Comput. Phys..

[22]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[23]  M. Guiggiani,et al.  Direct computation of Cauchy principal value integrals in advanced boundary elements , 1987 .

[24]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[25]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[26]  Dongdong Wang,et al.  An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions , 2010 .

[27]  Thomas J. R. Hughes,et al.  Conformal solid T-spline construction from boundary T-spline representations , 2013 .

[28]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[29]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[30]  Annalisa Buffa,et al.  Isogeometric Analysis for Electromagnetic Problems , 2010, IEEE Transactions on Magnetics.

[31]  L. Gaul,et al.  A comparative study of three boundary element approaches to calculate the transient response of viscoelastic solids with unbounded domains , 1999 .

[32]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[33]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[34]  V. Ulbricht,et al.  Microscale Modeling of Magnetoactive Composites Undergoing Large Deformations , 2014 .

[35]  Markus Kästner,et al.  Higher‐order extended FEM for weak discontinuities – level set representation, quadrature and application to magneto‐mechanical problems , 2013 .

[36]  Mixed FEM and BEM coupling for the three‐dimensional magnetostatic problem , 2003 .

[37]  J. Trevelyan,et al.  An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects , 2013, 1302.5305.

[38]  J. Trevelyan,et al.  Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems , 2013 .

[39]  Christian Hafner Numerische Berechnung elektromagnetischer Felder , 1987 .

[40]  T. Takahashi,et al.  An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions , 2012 .

[41]  Carlos Alberto Brebbia,et al.  Boundary Elements: An Introductory Course , 1989 .

[42]  Markus Kästner,et al.  Development of a quadratic finite element formulation based on the XFEM and NURBS , 2011 .

[43]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[44]  J. Telles A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals , 1987 .

[45]  Robust FEM/BEM Coupling for Magnetostatics on Multiconnected Domains , 2010, IEEE Transactions on Magnetics.

[46]  L. G. Suttorp,et al.  Foundations of electrodynamics , 1972 .

[47]  Thomas J. R. Hughes,et al.  An isogeometric analysis approach to gradient damage models , 2011 .

[48]  J. Fetzer,et al.  Die Kopplung der Randelementmethode und der Methode der finiten Elemente zur Lösung dreidimensionaler elektromagnetischer Feldprobleme auf unendlichem Grundgebiet , 1993 .

[49]  D. R. Fredkin,et al.  Hybrid method for computing demagnetizing fields , 1990 .

[50]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[51]  M. Schanz A boundary element formulation in time domain for viscoelastic solids , 1999 .

[52]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[53]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[54]  Michael Feischl,et al.  3D FEM-BEM-Coupling Method to solve Magnetostatic Maxwell Equations , 2012 .

[55]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[56]  Panagiotis D. Kaklis,et al.  An isogeometric BEM for exterior potential-flow problems in the plane , 2009, Symposium on Solid and Physical Modeling.

[57]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[58]  J. C. Sabonnadiere,et al.  Finite element modeling of open boundary problems , 1990 .

[59]  M. Kästner,et al.  Inelastic material behavior of polymers – Experimental characterization, formulation and implementation of a material model , 2012 .

[60]  Addressing the corner problem in BEM solution of heat conduction problems , 1994 .

[61]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[62]  L. Wrobel,et al.  An Integral-Equation Formulation for Anisotropic Elastostatics , 1996 .

[63]  Thomas J. R. Hughes,et al.  An isogeometric approach to cohesive zone modeling , 2011 .

[64]  Vinh Phu Nguyen,et al.  An introduction to Isogeometric Analysis with Matlab\textsuperscript{\textregistered{}} implementation: FEM and XFEM formulations , 2012 .