A hybrid IGAFEM/IGABEM formulation for two-dimensional stationary magnetic and magneto-mechanical field problems
暂无分享,去创建一个
Markus Kästner | Sebastian Müller | Volker Ulbricht | M. Kästner | V. Ulbricht | Stefan May | S. Müller | Stefan May
[1] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[2] Massimo Guiggiani,et al. ERROR INDICATORS FOR ADAPTIVE MESH REFINEMENT IN THE BOUNDARY ELEMENT METHOD - A NEW APPROACH , 1990 .
[3] Lothar Gaul,et al. Boundary element methods for engineers and scientists , 2003 .
[4] Elaine Cohen,et al. Volumetric parameterization of complex objects by respecting multiple materials , 2010, Comput. Graph..
[5] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[6] A. Engel,et al. On the electromagnetic force on a polarizable body , 2002 .
[7] T. Hughes,et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .
[8] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[9] Kang Li,et al. Isogeometric analysis and shape optimization via boundary integral , 2011, Comput. Aided Des..
[10] Thomas J. R. Hughes,et al. Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..
[11] Nicolas Triantafyllidis,et al. Experiments and modeling of iron-particle-filled magnetorheological elastomers , 2012 .
[12] Steffen Marburg,et al. Structural‐acoustic coupling on non‐conforming meshes with quadratic shape functions , 2012 .
[13] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .
[14] F. Rizzo,et al. An integral equation formulation of three dimensional anisotropic elastostatic boundary value problems , 1973 .
[15] Gérard A. Maugin,et al. Electrodynamics Of Continua , 1990 .
[16] P. Silvester,et al. Exterior finite elements for 2-dimensional field problems with open boundaries , 1977 .
[17] Steffen Marburg,et al. FEM-BEM-coupling and structural-acoustic sensitivity analysis for shell geometries , 2005 .
[18] T. Belytschko,et al. X‐FEM in isogeometric analysis for linear fracture mechanics , 2011 .
[19] Markus Kästner,et al. XFEM modeling and homogenization of magnetoactive composites , 2013 .
[20] T. Rabczuk,et al. A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .
[21] Giancarlo Sangalli,et al. Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations , 2012, J. Comput. Phys..
[22] G. Sangalli,et al. Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .
[23] M. Guiggiani,et al. Direct computation of Cauchy principal value integrals in advanced boundary elements , 1987 .
[24] Cv Clemens Verhoosel,et al. A phase-field description of dynamic brittle fracture , 2012 .
[25] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[26] Dongdong Wang,et al. An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions , 2010 .
[27] Thomas J. R. Hughes,et al. Conformal solid T-spline construction from boundary T-spline representations , 2013 .
[28] Jian-Ming Jin,et al. The Finite Element Method in Electromagnetics , 1993 .
[29] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[30] Annalisa Buffa,et al. Isogeometric Analysis for Electromagnetic Problems , 2010, IEEE Transactions on Magnetics.
[31] L. Gaul,et al. A comparative study of three boundary element approaches to calculate the transient response of viscoelastic solids with unbounded domains , 1999 .
[32] W. Wall,et al. Isogeometric structural shape optimization , 2008 .
[33] John A. Evans,et al. Isogeometric boundary element analysis using unstructured T-splines , 2013 .
[34] V. Ulbricht,et al. Microscale Modeling of Magnetoactive Composites Undergoing Large Deformations , 2014 .
[35] Markus Kästner,et al. Higher‐order extended FEM for weak discontinuities – level set representation, quadrature and application to magneto‐mechanical problems , 2013 .
[36] Mixed FEM and BEM coupling for the three‐dimensional magnetostatic problem , 2003 .
[37] J. Trevelyan,et al. An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects , 2013, 1302.5305.
[38] J. Trevelyan,et al. Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems , 2013 .
[39] Christian Hafner. Numerische Berechnung elektromagnetischer Felder , 1987 .
[40] T. Takahashi,et al. An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions , 2012 .
[41] Carlos Alberto Brebbia,et al. Boundary Elements: An Introductory Course , 1989 .
[42] Markus Kästner,et al. Development of a quadratic finite element formulation based on the XFEM and NURBS , 2011 .
[43] Yuri Bazilevs,et al. Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .
[44] J. Telles. A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals , 1987 .
[45] Robust FEM/BEM Coupling for Magnetostatics on Multiconnected Domains , 2010, IEEE Transactions on Magnetics.
[46] L. G. Suttorp,et al. Foundations of electrodynamics , 1972 .
[47] Thomas J. R. Hughes,et al. An isogeometric analysis approach to gradient damage models , 2011 .
[48] J. Fetzer,et al. Die Kopplung der Randelementmethode und der Methode der finiten Elemente zur Lösung dreidimensionaler elektromagnetischer Feldprobleme auf unendlichem Grundgebiet , 1993 .
[49] D. R. Fredkin,et al. Hybrid method for computing demagnetizing fields , 1990 .
[50] T. Hughes,et al. Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .
[51] M. Schanz. A boundary element formulation in time domain for viscoelastic solids , 1999 .
[52] T. Hughes,et al. Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .
[53] T. Belytschko,et al. A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .
[54] Michael Feischl,et al. 3D FEM-BEM-Coupling Method to solve Magnetostatic Maxwell Equations , 2012 .
[55] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[56] Panagiotis D. Kaklis,et al. An isogeometric BEM for exterior potential-flow problems in the plane , 2009, Symposium on Solid and Physical Modeling.
[57] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[58] J. C. Sabonnadiere,et al. Finite element modeling of open boundary problems , 1990 .
[59] M. Kästner,et al. Inelastic material behavior of polymers – Experimental characterization, formulation and implementation of a material model , 2012 .
[60] Addressing the corner problem in BEM solution of heat conduction problems , 1994 .
[61] C. Brebbia,et al. Boundary Element Techniques , 1984 .
[62] L. Wrobel,et al. An Integral-Equation Formulation for Anisotropic Elastostatics , 1996 .
[63] Thomas J. R. Hughes,et al. An isogeometric approach to cohesive zone modeling , 2011 .
[64] Vinh Phu Nguyen,et al. An introduction to Isogeometric Analysis with Matlab\textsuperscript{\textregistered{}} implementation: FEM and XFEM formulations , 2012 .