New fermionic formula for unrestricted Kostka polynomials

A new fermionic formula for the unrestricted Kostka polynomials of type An-1(1) is presented. This formula is different from the one given by Hatayama et al. and is valid for all crystal paths based on Kirillov-Reshetikhin modules, not just for the symmetric and antisymmetric case. The fermionic formula can be interpreted in terms of a new set of unrestricted rigged configurations. For the proof a statistics preserving bijection from this new set of unrestricted rigged configurations to the set of unrestricted crystal paths is given which generalizes a bijection of Kirillov and Reshetikhin.

[1]  Character formulae of sl̂n-modules and inhomogeneous paths , 1998, math/9802085.

[2]  Andrew V. Sills,et al.  On identities of the Rogers-Ramanujan type , 2006, 1811.11285.

[3]  Affine Type A Crystal Structure on Tensor Products of Rectangles, Demazure Characters, and Nilpotent Varieties , 1998, math/9804039.

[4]  Anne Schilling,et al.  q-Supernomial coefficients: From riggings to ribbons , 2001, math/0107214.

[5]  Fermionic Formulas For Unrestricted Kostka Polynomials And Superconformal Characters , 2005, math/0512536.

[6]  NEW COMBINATORIAL FORMULA FOR MODIFIED HALL-LITTLEWOOD POLYNOMIALS , 1998, math/9803006.

[7]  Anatol N. Kirillov,et al.  Combinatorics, Bethe Ansatz, and representations of the symmetric group , 1988 .

[8]  H. Bethe,et al.  Zur Theorie der Metalle , 1931 .

[9]  A. Schilling,et al.  NEW EXPLICIT EXPRESSION FOR A (1) SUPERNOMIALS , 2005 .

[10]  Anne Schilling,et al.  Supernomial Coefficients, Polynomial Identities and q-Series , 1997 .

[11]  Anne Schilling Crystal structure on rigged configurations , 2006 .

[12]  A. Schilling,et al.  An A$_2$ Bailey lemma and Rogers--Ramanujan-type identities , 1998, math/9807125.

[13]  Anatol N. Kirillov,et al.  The Bethe Ansatz and the combinatorics of Young tableaux , 1988 .

[14]  Kostka polynomials and energy functions in solvable lattice models , 1995, q-alg/9512027.

[15]  Anne Schilling,et al.  X=M for symmetric powers , 2006 .

[16]  Fermionic Formulas for Level-Restricted Generalized Kostka Polynomials and Coset Branching Functions , 2000, math/0001114.

[17]  Anne Schilling,et al.  A bijection between Littlewood-Richardson tableaux and rigged configurations , 1999, math/9901037.

[18]  Inverse scattering method for a soliton cellular automaton , 2004, math-ph/0406038.

[19]  S. Donaldson Anti Self‐Dual Yang‐Mills Connections Over Complex Algebraic Surfaces and Stable Vector Bundles , 1985 .

[20]  The Bailey Lemma and Kostka Polynomials , 2002, math/0207030.

[21]  Masaki Kashiwara,et al.  Crystal Graphs for Representations of the q-Analogue of Classical Lie Algebras , 1994 .

[22]  H. Bethe On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain , 1931 .

[23]  Anne Schilling A bijection between type Dn(1) crystals and rigged configurations , 2004 .

[24]  A. Kirillov,et al.  A Generalization of the Kostka–Foulkes Polynomials , 1998, math/9803062.

[25]  Masato Okado,et al.  Remarks on Fermionic Formula , 1998, math/9812022.

[26]  Masato Okado,et al.  Paths, crystals and fermionic formulae , 2001 .

[27]  Anne Schilling,et al.  Inhomogeneous Lattice Paths, Generalized Kostka Polynomials and An−1 Supernomials , 1998, math/9802111.

[28]  G.Hatayama,et al.  Paths, Crystals and Fermionic Formulae , 2001, math/0102113.

[29]  Masaki Kashiwara,et al.  Crystalizing theq-analogue of universal enveloping algebras , 1990 .