Experimental prospects for precision observables in $e^{-}e^{+}\rightarrow q\bar{q}$ with $q=b,c$ processes at the ILC operating at 250 and 500 GeV of center of mass

Future Higgs Factories will allow the precise study of $e^{-}e^{+}\rightarrow q\bar{q}$ with $q=s,c,b,t$ interactions at different energies, from the Z-pole up to high energies never reached before. In this contribution, we will discuss the experimental prospects for the measurement of differential observables in $e^{-}e^{+}\rightarrow b\bar{b}$ and $e^{-}e^{+}\rightarrow c\bar{c}$ processes at high energies, 250 and 500 GeV, using full simulation samples and the full reconstruction chain from the ILD concept group. These processes call for superb primary and secondary vertex measurements, a high tracking efficiency to correctly measure the vertex charge and excellent hadron identification capabilities using $dE/dx$. This latter aspect will be discussed in detail together with its implementation within the standard flavour tagging tools developed for ILD (LCFI+). In addition, prospects associated with potential improvements using cluster counting techniques instead of traditional $dE/dx$ will be discussed.

[1]  France,et al.  Experimental methods and prospects on the measurement of electroweak $b$ and $c$-quark observables at the ILC operating at 250 GeV , 2023, 2306.11413.

[2]  K. Desch,et al.  Double-hit separation and dE/dx resolution of a time projection chamber with GEM readout , 2022, Journal of Instrumentation.

[3]  Shuichiro Funatsu,et al.  Fermion pair production at e−e+ linear collider experiments in GUT inspired gauge-Higgs unification , 2020, 2006.02157.

[4]  Christophe Royon,et al.  International Large Detector: Interim Design Report , 2020 .

[5]  H. Yamamoto,et al.  Complementarity between ILC250 and ILC-GigaZ , 2019, 1905.00220.

[6]  Dana Z. Anderson,et al.  Search for ttH production in the H→bb decay channel with leptonic tt decays in proton-proton collisions at √s = 13 TeV , 2019 .

[7]  Gerald Eigen,et al.  The International Linear Collider. A Global Project , 2019, 1901.09829.

[8]  M. Peskin,et al.  Fermion Pair Production in SO(5) x U(1) Gauge-Higgs Unification Models , 2018, 1811.07877.

[9]  Shuichiro Funatsu,et al.  Distinct signals of the gauge-Higgs unification in $e^+e^-$ collider experiments , 2017, 1705.05282.

[10]  Y. Kato,et al.  A Time Projection Chamber with GEM-Based Readout , 2016, 1604.00935.

[11]  T. Suehara,et al.  LCFIPlus: A framework for jet analysis in linear collider studies , 2015, 1506.08371.

[12]  J. S. Marshall,et al.  The Pandora software development kit for pattern recognition , 2015, The European Physical Journal C.

[13]  Frank Gaede,et al.  DD4hep: A Detector Description Toolkit for High Energy Physics Experiments , 2014 .

[14]  Shigeki Fukuda,et al.  The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design , 2013 .

[15]  Shigeki Fukuda,et al.  The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \& in the Technical Design Phase , 2013 .

[16]  A. Savoy-Navarro,et al.  The International Linear Collider Technical Design Report - Volume 4: Detectors , 2013 .

[17]  Mike Harrison,et al.  The International Linear Collider Technical Design Report - Volume 1: Executive Summary , 2013, 1306.6329.

[18]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[19]  A. Trzupek,et al.  Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012, 1207.7214.

[20]  W. Kilian,et al.  WHIZARD—simulating multi-particle processes at LHC and ILC , 2007, 0708.4233.

[21]  F. Richard,et al.  Resolving the AFBb puzzle in an extra dimensional model with an extended gauge structure , 2006, hep-ph/0610173.

[22]  The Aleph Collaboration,et al.  Precision electroweak measurements on the Z resonance , 2005, hep-ex/0509008.

[23]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[24]  D. Schulte Beam-Beam Simulations with GUINEA-PIG , 1999 .

[25]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[26]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[27]  N. Smirnov Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .

[28]  Sonja Engmann Quantitative Methods Inquires 1 COMPARING DISTRIBUTIONS : THE TWO-SAMPLE ANDERSON-DARLING TEST AS AN ALTERNATIVE TO THE KOLMOGOROV-SMIRNOFF TEST , 2013 .

[29]  J. L. Hodges,et al.  The significance probability of the smirnov two-sample test , 1958 .

[30]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .