Explicating the Sodium Storage Kinetics and Redox Mechanism of Highly Pseudocapacitive Binary Transition Metal Sulfide via Operando Techniques and Ab Initio Evaluation

[1]  Jiulin Wang,et al.  Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. , 2019, Angewandte Chemie.

[2]  Xien Liu,et al.  N-doped graphene combined with alloys (NiCo, CoFe) and their oxides as multifunctional electrocatalysts for oxygen and hydrogen electrode reactions , 2018, Carbon.

[3]  H. Yang,et al.  Bifunctional porous iron phosphide/carbon nanostructure enabled high-performance sodium-ion battery and hydrogen evolution reaction , 2018, Energy Storage Materials.

[4]  X. Bao,et al.  2D holey cobalt sulfide nanosheets derived from metal–organic frameworks for high-rate sodium ion batteries with superior cyclability , 2018 .

[5]  Bo Chen,et al.  Controllable Design of MoS2 Nanosheets Anchored on Nitrogen‐Doped Graphene: Toward Fast Sodium Storage by Tunable Pseudocapacitance , 2018, Advanced materials.

[6]  H. Yang,et al.  3D hierarchical defect-rich NiMo3S4 nanosheet arrays grown on carbon textiles for high-performance sodium-ion batteries and hydrogen evolution reaction , 2018, Nano Energy.

[7]  Wei Wang,et al.  Metallic Graphene‐Like VSe2 Ultrathin Nanosheets: Superior Potassium‐Ion Storage and Their Working Mechanism , 2018, Advanced materials.

[8]  H. Yang,et al.  3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries , 2018 .

[9]  H. Yang,et al.  Tailoring NiO Nanostructured Arrays by Sulfate Anions for Sodium-Ion Batteries. , 2018, Small.

[10]  Y. Chueh,et al.  Hollow NiCo2S4 Nanospheres Hybridized with 3D Hierarchical Porous rGO/Fe2O3 Composites toward High‐Performance Energy Storage Device , 2018 .

[11]  S. Passerini,et al.  Sodium-Ion Batteries: Beyond Insertion for Na-Ion Batteries: Nanostructured Alloying and Conversion Anode Materials (Adv. Energy Mater. 17/2018) , 2018, Advanced Energy Materials.

[12]  Yantao Zhang,et al.  Co9S8@carbon porous nanocages derived from a metal–organic framework: a highly efficient bifunctional catalyst for aprotic Li–O2 batteries , 2018 .

[13]  Yi Cui,et al.  Hierarchical assembly and superior sodium storage properties of a sea-sponge structured C/SnS@C nanocomposite , 2018 .

[14]  Oliver G. Schmidt,et al.  Efficient Sodium Storage in Rolled‐Up Amorphous Si Nanomembranes , 2018, Advanced materials.

[15]  X. Lou,et al.  Formation of Hierarchical Cu‐Doped CoSe2 Microboxes via Sequential Ion Exchange for High‐Performance Sodium‐Ion Batteries , 2018, Advanced materials.

[16]  Wenyao Li,et al.  A Dendritic Nickel Cobalt Sulfide Nanostructure for Alkaline Battery Electrodes , 2018 .

[17]  Jae-Jin Shim,et al.  One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. , 2018, Nanoscale.

[18]  K. Kubota,et al.  Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries , 2018 .

[19]  Jianqiu Deng,et al.  Sodium‐Ion Batteries: From Academic Research to Practical Commercialization , 2018 .

[20]  Wei Huang,et al.  Electrochemically Synthesis of Nickel Cobalt Sulfide for High‐Performance Flexible Asymmetric Supercapacitors , 2017, Advanced science.

[21]  Xiaobo Ji,et al.  Molybdenum Phosphide: A Conversion-type Anode for Ultralong-Life Sodium-Ion Batteries , 2017 .

[22]  Xiaojun Wu,et al.  Peapod‐like Li3VO4/N‐Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for High‐Energy Lithium‐Ion Capacitors , 2017, Advanced materials.

[23]  L. Mai,et al.  Layered VS2 Nanosheet‐Based Aqueous Zn Ion Battery Cathode , 2017 .

[24]  H. Yang,et al.  Cubic-shaped WS2 nanopetals on a Prussian blue derived nitrogen-doped carbon nanoporous framework for high performance sodium-ion batteries , 2017 .

[25]  Pooi See Lee,et al.  Carbon Coated Bimetallic Sulfide Hollow Nanocubes as Advanced Sodium Ion Battery Anode , 2017 .

[26]  Xiaoyu Wu,et al.  In situ template synthesis of hollow nanospheres assembled from NiCo2S4@C ultrathin nanosheets with high electrochemical activities for lithium storage and ORR catalysis. , 2017, Physical chemistry chemical physics : PCCP.

[27]  Qing Zhao,et al.  Selenium Phosphide (Se4P4) as a New and Promising Anode Material for Sodium‐Ion Batteries , 2017 .

[28]  Shizhong Cui,et al.  Design of FeS2@rGO composite with enhanced rate and cyclic performances for sodium ion batteries , 2017 .

[29]  Yan Sun,et al.  Porous organic polymer/RGO composite as high performance cathode for half and full sodium ion batteries , 2017 .

[30]  O. Schmidt,et al.  Tunable Pseudocapacitance in 3D TiO2-δ Nanomembranes Enabling Superior Lithium Storage Performance. , 2017, ACS nano.

[31]  Chenghao Yang,et al.  V5S8–graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries , 2017 .

[32]  Rujia Zou,et al.  S, N‐Co‐Doped Graphene‐Nickel Cobalt Sulfide Aerogel: Improved Energy Storage and Electrocatalytic Performance , 2016, Advanced science.

[33]  Jer-Lai Kuo,et al.  Metallic VS2 Monolayer Polytypes as Potential Sodium-Ion Battery Anode via ab Initio Random Structure Searching. , 2016, ACS applied materials & interfaces.

[34]  Hui Xu,et al.  The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries , 2016 .

[35]  Bingan Lu,et al.  Core–Shell Ge@Graphene@TiO2 Nanofibers as a High‐Capacity and Cycle‐Stable Anode for Lithium and Sodium Ion Battery , 2016 .

[36]  Hua Zhang,et al.  Ultrahigh Performance of Novel Capacitive Deionization Electrodes based on A Three-Dimensional Graphene Architecture with Nanopores , 2016, Scientific Reports.

[37]  Yousung Jung,et al.  Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes , 2015 .

[38]  Ziqiang Zhu,et al.  Multi-slice nanostructured WS2@rGO with enhanced Li-ion battery performance and a comprehensive mechanistic investigation. , 2015, Physical chemistry chemical physics : PCCP.

[39]  P. Adelhelm,et al.  FeV2S4 as a high capacity electrode material for sodium-ion batteries. , 2015, Chemical communications.

[40]  S. Mitra,et al.  Exfoliated MoS2 Sheets and Reduced Graphene Oxide-An Excellent and Fast Anode for Sodium-ion Battery , 2015, Scientific Reports.

[41]  Y. Kang,et al.  Synergetic compositional and morphological effects for improved Na⁺ storage properties of Ni₃Co₆S₈-reduced graphene oxide composite powders. , 2015, Nanoscale.

[42]  Y. Kang,et al.  Sodium ion storage properties of WS₂-decorated three-dimensional reduced graphene oxide microspheres. , 2015, Nanoscale.

[43]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[44]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[45]  A. B. Muñoz-García,et al.  Ab initio DFT+U analysis of oxygen transport in LaCoO3: the effect of Co3+ magnetic states , 2014 .

[46]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[47]  Qiao Liu,et al.  NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. , 2013, ACS applied materials & interfaces.

[48]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[49]  C. Hsieh,et al.  Electrochemical Capacitors Based on Graphene Oxide Sheets Using Different Aqueous Electrolytes , 2011 .

[50]  Robert Kostecki,et al.  The interaction of Li+ with single-layer and few-layer graphene. , 2010, Nano letters.

[51]  Yukinori Koyama,et al.  First-principles approach to chemical diffusion of lithium atoms in a graphite intercalation compound , 2008 .

[52]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[53]  Mo Song,et al.  Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents , 2007 .

[54]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[55]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[56]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[57]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[58]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[59]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[60]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[61]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[62]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[63]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[64]  Bo Peng,et al.  A High‐Rate and Ultrastable Sodium Ion Anode Based on a Novel Sn4P3‐P@Graphene Nanocomposite , 2018 .

[65]  K. Kubota,et al.  Review-Practical Issues and Future Perspective for Na-Ion Batteries , 2015 .

[66]  Jun Yang,et al.  Hybrid NiCo2S4@MnO2 heterostructures for high-performance supercapacitor electrodes , 2015 .