Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins.

[1]  J. Ferrebee,et al.  Studies on Malarial Parasites III. A Procedure for Preparing Concentrates of Plasmodium Vivax , 1946 .

[2]  I. Sherman,et al.  The accumulation of amino acids by Plasmodium lophurae (avian malaria). , 1967, Comparative biochemistry and physiology.

[3]  R. O. Mcalister Time-dependent loss of invasive ability of Plasmodium berghei merozoites in vitro. , 1977, The Journal of parasitology.

[4]  C. Lambros,et al.  Synchronization of Plasmodium falciparum erythrocytic stages in culture. , 1979, The Journal of parasitology.

[5]  I. Sherman,et al.  Biochemistry of Plasmodium (malarial parasites). , 1979, Microbiological reviews.

[6]  K. Rieckmann,et al.  Isolation of intracellular parasites (Plasmodium falciparum) from culture using free-flow electrophoresis: separation of the free parasites according to stages. , 1982, The Journal of parasitology.

[7]  A. Fulton,et al.  How crowded is the cytoplasm? , 1982, Cell.

[8]  W. A. Siddiqui,et al.  Concentration of Plasmodium falciparum-infected erythrocytes by density gradient centrifugation in Percoll. , 1982, The Journal of parasitology.

[9]  P. Myler,et al.  Purification of mature schizonts of Plasmodium falciparum on colloidal silica gradients. , 1982, Bulletin of the World Health Organization.

[10]  R. Wilson,et al.  A simple method for isolating viable mature parasites of Plasmodium falciparum from cultures. , 1984, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[11]  W. Breuer,et al.  Characterization of permeation pathways in the plasma membrane of human erythrocytes infected with early stages of Plasmodium falciparum: Association with parasite development , 1985, Journal of cellular physiology.

[12]  H. Ginsburg,et al.  Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. , 1985, Molecular and biochemical parasitology.

[13]  J. Jensen,et al.  Nutritional requirements of Plasmodium falciparum in culture. I. Exogenously supplied dialyzable components necessary for continuous growth. , 1985, The Journal of protozoology.

[14]  H. Ginsburg,et al.  Digestion of the host erythrocyte by malaria parasites is the primary target for quinoline-containing antimalarials. , 1986, Biochemical pharmacology.

[15]  H. Ginsburg,et al.  Selectivity properties of pores induced in host erythrocyte membrane by Plasmodium falciparum. Effect of parasite maturation. , 1986, Biochimica et biophysica acta.

[16]  H. Vial,et al.  Reevaluation, using marker enzymes, of the ability of saponin and ammonium chloride to free Plasmodium from infected erythrocytes. , 1987, The Journal of parasitology.

[17]  R. Schirmer,et al.  Studies on glutathione reductase and methemoglobin from human erythrocytes parasitized with Plasmodium falciparum. , 1987, Molecular and biochemical parasitology.

[18]  H. Ginsburg,et al.  Compartment analysis of ATP in malaria-infected erythrocytes. , 1988, Biochemistry international.

[19]  R. Levine,et al.  Malaria diagnosis by direct observation of centrifuged samples of blood. , 1988, The American journal of tropical medicine and hygiene.

[20]  P. Rosenthal,et al.  A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. , 1988, The Journal of clinical investigation.

[21]  V L Lew,et al.  A mathematical model of the volume, pH, and ion content regulation in reticulocytes. Application to the pathophysiology of sickle cell dehydration. , 1991, The Journal of clinical investigation.

[22]  E. Mccleskey,et al.  A nutrient-permeable channel on the intraerythrocytic malaria parasite , 1993, Nature.

[23]  H. Ginsburg,et al.  Hemoglobin denaturation and iron release in acidified red blood cell lysate--a possible source of iron for intraerythrocytic malaria parasites. , 1993, Experimental parasitology.

[24]  I. Gluzman,et al.  Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. , 1994, The EMBO journal.

[25]  S. Hoffman,et al.  Acridine orange diagnosis of Plasmodium falciparum: evaluation after experimental infection. , 1994, The American journal of tropical medicine and hygiene.

[26]  S. Bhakdi,et al.  Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. , 1996, The Biochemical journal.

[27]  K. Kirk,et al.  Transport and Metabolism of the Essential Vitamin Pantothenic Acid in Human Erythrocytes Infected with the Malaria ParasitePlasmodium falciparum * , 1998, The Journal of Biological Chemistry.

[28]  Irwin W. Sherman,et al.  Malaria : parasite biology, pathogenesis, and protection , 1998 .

[29]  H. Ginsburg,et al.  Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. , 1998, Biochemical pharmacology.

[30]  H. Ginsburg,et al.  The fate of ferriprotorphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. , 1999, Molecular and biochemical parasitology.

[31]  W. Richter,et al.  Hemolysis of human erythrocytes with saponin affects the membrane structure. , 2000, Acta histochemica.

[32]  Kiaran Kirk,et al.  Membrane Transport in the Malaria-Infected Erythrocyte , 2001 .

[33]  D. Spira,et al.  A simple method for separation of uninfected erythrocytes from those infected withPlasmodium berghei and for isolation of artificially released parasites , 2004, Zeitschrift für Parasitenkunde.

[34]  Y. Zhang,et al.  A comparative study on the effect of chloroquine and ammonium chloride on feeding process of Plasmodium falciparum in vitro , 2004, Parasitology Research.