Strong π-stacking causes unusually large anisotropic thermal expansion and thermochromism

Significance π-stacking of polynuclear aromatic rings encompasses fundamental scientific phenomena in chemical bonding and photophysics with strong impacts on societal aspects that include electronic devices, DNA/RNA intercalation, and optical sensing of environmental pollutants. This work describes unusually strong π-stacking in a recently synthesized naphthalene-diimide derivative, as well as a prototypical π-stacked molecule, pyrene. The infinite/cooperative π-stacking in the former and dimer stacking in the latter are much stronger than previously thought to be possible for this type of supramolecular interaction, reaching ∼50 and 20 kcal ⋅ mol−1, respectively. This has led to unusually large anisotropic thermal expansion and multicycle/multicolor thermochromism in BNDI-T, whereas multiple unusual binding and photophysical properties have been discovered for the classical organic chromophore pyrene. π-stacking in ground-state dimers/trimers/tetramers of N-butoxyphenyl(naphthalene)diimide (BNDI) exceeds 50 kcal ⋅ mol−1 in strength, drastically surpassing that for the *3[pyrene]2 excimer (∼30 kcal ⋅ mol−1; formal bond order = 1) and similar to other weak-to-moderate classical covalent bonds. Cooperative π-stacking in triclinic (BNDI-T) and monoclinic (BNDI-M) polymorphs effects unusually large linear thermal expansion coefficients (αa, αb, αc, β) of (452, −16.8, −154, 273) × 10−6 ⋅ K−1 and (70.1, −44.7, 163, 177) × 10−6 ⋅ K−1, respectively. BNDI-T exhibits highly reversible thermochromism over a 300-K range, manifest by color changes from orange (ambient temperature) toward red (cryogenic temperatures) or yellow (375 K), with repeated thermal cycling sustained for over at least 2 y.

[1]  Jose L. Mendoza-Cortes,et al.  Rapidly Reversible Organic Crystalline Switch for Conversion of Heat into Mechanical Energy. , 2020, Journal of the American Chemical Society.

[2]  Oussama M. El-Kadri,et al.  Pyrene Bearing Azo-Functionalized Porous Nanofibers for CO2 Separation and Toxic Metal Cation Sensing , 2018, ACS omega.

[3]  V. Yam,et al.  Precise Modulation of Molecular Building Blocks from Tweezers to Rectangles for Recognition and Stimuli-Responsive Processes. , 2018, Accounts of chemical research.

[4]  Ronald A. Smaldone,et al.  The thermo-responsive behavior in molecular crystals of naphthalene diimides and their 3D printed thermochromic composites , 2018 .

[5]  Jeffrey S. Ovens,et al.  Designing anisotropic cyanometallate coordination polymers with unidirectional thermal expansion (TE): 2D zero and 1D colossal positive TE. , 2018, Chemical communications.

[6]  T. Brüning,et al.  Environmentally prevalent polycyclic aromatic hydrocarbons can elicit co-carcinogenic properties in an in vitro murine lung epithelial cell model , 2017, Archives of Toxicology.

[7]  V. K. Nguyen,et al.  Thermo-mechanically responsive crystalline organic cantilever. , 2017, Chemical communications.

[8]  S. Bhosale,et al.  Functional Naphthalene Diimides: Synthesis, Properties, and Applications. , 2016, Chemical reviews.

[9]  P. Naumov,et al.  Strong and Anomalous Thermal Expansion Precedes the Thermosalient Effect in Dynamic Molecular Crystals , 2016, Scientific Reports.

[10]  David Schmidt,et al.  Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. , 2016, Chemical reviews.

[11]  J. Junquera,et al.  On the Colossal and Highly Anisotropic Thermal Expansion Exhibited by Imidazolium Salts , 2015 .

[12]  G. Ruggeri,et al.  Thermochromic polyethylene films doped with perylene chromophores: experimental evidence and methods for characterization of their phase behaviour , 2015 .

[13]  Y. Chujo,et al.  o-Carborane-based anthracene: a variety of emission behaviors. , 2015, Angewandte Chemie.

[14]  T. He,et al.  Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air , 2015, Nature Communications.

[15]  Roy N. McDougald,et al.  Molecular and electronic structure of cyclic trinuclear gold(I) carbeniate complexes: insights for structure/luminescence/conductivity relationships. , 2014, Inorganic chemistry.

[16]  A. Pron,et al.  New semiconducting naphthalene bisimides N-substituted with alkoxyphenyl groups: spectroscopic, electrochemical, structural and electrical properties , 2014 .

[17]  Arno Seeboth,et al.  Thermochromic polymers--function by design. , 2014, Chemical reviews.

[18]  V. Percec,et al.  Transformation from kinetically into thermodynamically controlled self-organization of complex helical columns with 3D periodicity assembled from dendronized perylene bisimides. , 2013, Journal of the American Chemical Society.

[19]  S. Inagaki,et al.  Isothermally Reversible Fluorescence Switching of a Mechanochromic Perylene Bisimide Dye , 2012, Advanced materials.

[20]  Hande Karabıyık,et al.  Hydrogen-bridged chelate ring-assisted π-stacking interactions. , 2012, Acta crystallographica. Section B, Structural science.

[21]  Mark A Ratner,et al.  Rylene and Related Diimides for Organic Electronics , 2011, Advanced materials.

[22]  Lixin Wu,et al.  Thermo- and acid-responsive photochromic spironaphthoxazine-containing organogelators. , 2010, Chemistry.

[23]  K. Ghiggino,et al.  Melt-induced fluorescent signature in a simple naphthalenediimide. , 2010, Chemical communications.

[24]  Zhenan Bao,et al.  A crystal-engineered hydrogen-bonded octachloroperylene diimide with a twisted core: an n-channel organic semiconductor. , 2010, Angewandte Chemie.

[25]  Xiaoping Wang,et al.  Crystallographic observation of dynamic gas adsorption sites and thermal expansion in a breathable fluorous metal-organic framework. , 2009, Angewandte Chemie.

[26]  J. Simpson,et al.  Origin of the Exceptional Negative Thermal Expansion in Metal-Organic Framework-5 Zn 4 O(1,4-benzenedicarboxylate) 3 , 2008 .

[27]  Martin T. Dove,et al.  Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6]. , 2008 .

[28]  S. Grimme Do special noncovalent pi-pi stacking interactions really exist? , 2008, Angewandte Chemie.

[29]  D. Truhlar,et al.  A Prototype for Graphene Material Simulation : Structures and Interaction Potentials of Coronene Dimers , 2008 .

[30]  M. Calleja,et al.  Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6] , 2008, Science.

[31]  J. Zink,et al.  Molecules in Glass: Probes, Ordered Assemblies, and Functional Materials , 2007 .

[32]  William A. Goddard,et al.  Metal−Organic Frameworks Provide Large Negative Thermal Expansion Behavior , 2007 .

[33]  Krista S. Walton,et al.  Exceptional negative thermal expansion in isoreticular metal-organic frameworks. , 2007, Angewandte Chemie.

[34]  Bruce Dunn,et al.  Molecules in glass: probes, ordered assemblies, and functional materials. , 2007, Accounts of chemical research.

[35]  P. Marquetand,et al.  Photoluminescence and Conductivity of Self-Assembled π–π Stacks of Perylene Bisimide Dyes , 2007 .

[36]  Donald G Truhlar,et al.  A density functional that accounts for medium-range correlation energies in organic chemistry. , 2006, Organic letters.

[37]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[38]  S. Grimme Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn-Sham density functional theory. , 2006, Angewandte Chemie.

[39]  Zhijian Chen,et al.  One-dimensional luminescent nanoaggregates of perylene bisimides. , 2006, Chemical communications.

[40]  Mitsunobu Nakamura,et al.  Pyrene is highly emissive when attached to the RNA duplex but not to the DNA duplex: the structural basis of this difference , 2005, Nucleic acids research.

[41]  Omar M Yaghi,et al.  Gas Adsorption Sites in a Large-Pore Metal-Organic Framework , 2005, Science.

[42]  A. Goodwin,et al.  Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials , 2005 .

[43]  Frank Würthner,et al.  Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. , 2004, Chemical communications.

[44]  E. W. Meijer,et al.  Synthesis of n-type perylene bisimide derivatives and their orthogonal self-assembly with p-type oligo(p-phenylene vinylene)s. , 2004, Journal of the American Chemical Society.

[45]  S. Casey,et al.  Controlling Molecular Orientation in Solid Films via Self-Organization in the Liquid-Crystalline Phase , 2002 .

[46]  R. Friend,et al.  Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. , 2001, Science.

[47]  B. Gregg,et al.  Doping molecular semiconductors: n-type doping of a liquid crystal perylene diimide. , 2001, Journal of the American Chemical Society.

[48]  S. Diele,et al.  Fluorescent J-type aggregates and thermotropic columnar mesophases of perylene bisimide dyes. , 2001, Chemistry.

[49]  K. Müllen,et al.  New thermotropic dyes based on amino-substituted perylendicarboximides. , 2000, Chemistry.

[50]  H. Patterson,et al.  Oligomerization of Au(CN)2- and Ag(CN)2- Ions in Solution via Ground-State Aurophilic and Argentophilic Bonding , 2000 .

[51]  A. Dodabalapur,et al.  A soluble and air-stable organic semiconductor with high electron mobility , 2000, Nature.

[52]  B. Gregg,et al.  Liquid Crystal Perylene Diimide Films Characterized by Electrochemical, Spectroelectrochemical, and Conductivity versus Potential Measurements , 1998 .

[53]  A. Sleight,et al.  Exceptional Negative Thermal Expansion in AlPO4-17 , 1998 .

[54]  J. Mizuguchi Electronic Characterization of N,N′-Bis(2-phenylethyl)perylene-3,4:9,10-bis(di-carboximide) and its Application to Optical Disks , 1998, NIP & Digital Fabrication Conference.

[55]  B. Gregg,et al.  Self-Organization in Thin Films of Liquid Crystalline Perylene Diimides , 1997 .

[56]  John S. O. Evans,et al.  Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.

[57]  F. Winnik PHOTOPHYSICS OF PREASSOCIATED PYRENES IN AQUEOUS POLYMER SOLUTIONS AND IN OTHER ORGANIZED MEDIA , 1993 .

[58]  E. Hädicke,et al.  Kristallstruktur und Farbe bei Perylen‐3,4:9,10‐bis(dicarboximid)‐Pigmenten , 1980 .

[59]  A. Warshel,et al.  Theoretical evaluation of potential surfaces, equilibrium geometries and vibronic transition intensities of excimers: the pyrene crystal excimer , 1974 .

[60]  D. R. Sears,et al.  Density and Expansivity of Solid Xenon , 1962 .

[61]  Christopher J. Tassone,et al.  FROM SYNTHESIS TO PROPERTIES AND APPLICATIONS , 2013 .