Review on development of a scalable high-order nonhydrostatic multi-moment constrained finite volume dynamical core.

This report summarizes the major progresses to develop the dynamic core for next-generation atmospherical model for both numerical weather prediction and climate simulation. The numerical framework is based on a general formulation, so-called multi-moment constrained finite volume (MCV) method, which is well-balanced among solution quality (accuracy and robustness), algorithmic simplicity, computational efficiency and flexibility for model configuration. A local high-order limiting projection is also devised to remove spurious oscillations and noises in numerical solutions, which allows the numerical model working well alone without artificial diffusion or filter. The resulted numerical schemes are very simple, efficient and easy to implement for both structured and unstructured grids, which provide a promising plateform of great practical significance. We have implemented the MCV method to shallow water equations on various spherical grids, including Yin-Yang overset grid, cubed sphere grid and geodesic icosahedral grid, non-hydrostatic compressible atmosherical model under complex topographic boundary conditions. In addition, the moist dynamics simulation like moist thermal bubble has been validated by using direct microphysical feedback. We have also constructed a prototype of 3D global non-hydrostatic compressible atmosherical model on cubed sphere grid with an explicit/implicit-hybrid time integration scheme, which can be used as the base to develop global atmospheric GCM. All the MCV models have been verified with widely used benchmark tests. The numerical results show that the present MCV models have solution quality competitive to other exiting high order models. Parallelization of the MCV shallow water model on cubed sphere grid reveals its suitability for large scale parallel processing with desirable scalability.

[1]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[2]  Brian J. Hoskins,et al.  Stability of the Rossby-Haurwitz wave , 1973 .

[3]  Feng Xiao,et al.  CIP/multi-moment finite volume method for Euler equations: A semi-Lagrangian characteristic formulation , 2007, J. Comput. Phys..

[4]  Akio Arakawa,et al.  Integration of the Nondivergent Barotropic Vorticity Equation with AN Icosahedral-Hexagonal Grid for the SPHERE1 , 1968 .

[6]  Xingliang Li,et al.  A multi-moment transport model on cubed-sphere grid , 2011 .

[7]  Colin J. Cotter,et al.  Mixed finite elements for numerical weather prediction , 2011, J. Comput. Phys..

[8]  William C. Skamarock,et al.  A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids , 2010, J. Comput. Phys..

[9]  Mark A. Taylor,et al.  The Spectral Element Atmosphere Model (SEAM): High-Resolution Parallel Computation and Localized Resolution of Regional Dynamics , 2004 .

[10]  Yong Li,et al.  Numerical simulations of Rossby–Haurwitz waves , 2000 .

[11]  Feng Xiao,et al.  A high‐order multi‐moment constrained finite‐volume global shallow‐water model on the Yin‐Yang grid , 2015 .

[12]  Sang Hun Park,et al.  Idealized global nonhydrostatic atmospheric test cases on a reduced‐radius sphere , 2015 .

[13]  Colin J. Cotter,et al.  A finite element exterior calculus framework for the rotating shallow-water equations , 2012, J. Comput. Phys..

[15]  William C. Skamarock,et al.  A time-split nonhydrostatic atmospheric model for weather research and forecasting applications , 2008, J. Comput. Phys..

[16]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[17]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[18]  Mark A. Taylor,et al.  CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model , 2012, Int. J. High Perform. Comput. Appl..

[19]  A. Kageyama,et al.  ``Yin-Yang grid'': An overset grid in spherical geometry , 2004, physics/0403123.

[20]  R. Sadourny Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids , 1972 .

[21]  Feng Xiao,et al.  A Slope Constrained 4th Order Multi-Moment Finite Volume Method with WENO Limiter , 2015 .

[22]  V. Guinot Approximate Riemann Solvers , 2010 .

[23]  Mark A. Taylor,et al.  High-Resolution Mesh Convergence Properties and Parallel Efficiency of a Spectral Element Atmospheric Dynamical Core , 2005, Int. J. High Perform. Comput. Appl..

[25]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[26]  Feng Xiao,et al.  A global multimoment constrained finite-volume scheme for advection transport on the hexagonal geodesic grid , 2011 .

[27]  Feng Xiao,et al.  A global shallow water model using high order multi-moment constrained finite volume method and icosahedral grid , 2010, J. Comput. Phys..

[28]  Jean Côté,et al.  Experiments with different discretizations for the shallow‐water equations on a sphere , 2012 .

[29]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[30]  Colin J. Cotter,et al.  Analysis of a mixed finite-element pair proposed for an atmospheric dynamical core , 2013 .

[31]  Roni Avissar,et al.  The Ocean-Land-Atmosphere Model (OLAM). Part II: Formulation and Tests of the Nonhydrostatic Dynamic Core , 2008 .

[32]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[33]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[34]  Feng Xiao,et al.  High order multi-moment constrained finite volume method. Part I: Basic formulation , 2009, J. Comput. Phys..

[35]  Christiane Jablonowski,et al.  MCore: A non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods , 2012, J. Comput. Phys..

[36]  T. Clark A small-scale dynamic model using a terrain-following coordinate transformation , 1977 .

[37]  Francis X. Giraldo,et al.  A Scalable Spectral Element Eulerian Atmospheric Model (SEE-AM) for NWP: Dynamical Core Tests , 2004 .

[38]  Dörthe Handorf,et al.  Unsteady analytical solutions of the spherical shallow water equations , 2005 .

[39]  Hirofumi Tomita,et al.  Shallow water model on a modified icosahedral geodesic grid by using spring dynamics , 2001 .

[40]  David L. Williamson,et al.  The Cartesian method for solving partial differential equations in spherical geometry , 1998 .

[41]  Almut Gassmann,et al.  Non-hydrostatic modelling with ICON , 2010 .

[42]  Chungang Chen,et al.  An Adaptive Multimoment Global Model on a Cubed Sphere , 2011 .

[43]  D. Durran,et al.  A Compressible Model for the Simulation of Moist Mountain Waves , 1983 .

[44]  K. Droegemeier,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification , 2000 .

[45]  C. J. Cotter,et al.  Compatible finite element methods for numerical weather prediction , 2014 .

[46]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[47]  Christopher Edwards,et al.  Multi-scale geophysical modeling using the spectral element method , 2002, Comput. Sci. Eng..

[48]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation , 1998 .

[49]  F. Xiao,et al.  A Multimoment Finite-Volume Shallow-Water Model On The Yin-Yang Overset Spherical Grid , 2008 .

[50]  Shian-Jiann Lin,et al.  Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..

[51]  Takashi Yabe,et al.  A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver , 1991 .

[52]  C. Rossby Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action , 1939 .

[53]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[54]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[55]  Matthew R. Norman,et al.  A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics , 2011, J. Comput. Phys..

[56]  Feng Xiao,et al.  A global shallow‐water model on an icosahedral–hexagonal grid by a multi‐moment constrained finite‐volume scheme , 2014 .

[57]  Feng Xiao,et al.  Development of a hybrid parallel MCV-based high-order global shallow-water model , 2017, The Journal of Supercomputing.

[58]  Feng Xiao,et al.  A Multimoment Constrained Finite-Volume Model for Nonhydrostatic Atmospheric Dynamics , 2013 .

[59]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[60]  Richard C. J. Somerville,et al.  On the use of a coordinate transformation for the solution of the Navier-Stokes equations , 1975 .

[61]  Chungang Chen,et al.  Fourth order transport model on Yin-Yang grid by multi-moment constrained finite volume scheme , 2012, ICCS.

[62]  Nash'at Ahmad,et al.  Euler solutions using flux‐based wave decomposition , 2007 .

[63]  Feng Xiao,et al.  A 4th-order and single-cell-based advection scheme on unstructured grids using multi-moments , 2005, Comput. Phys. Commun..

[64]  Feng Xiao,et al.  Unified formulation for compressible and incompressible flows by using multi-integrated moments I: one-dimensional inviscid compressible flow , 2004 .

[65]  Henry M. Tufo,et al.  High-order Galerkin methods for scalable global atmospheric models , 2007, Comput. Geosci..

[66]  Christiane Jablonowski,et al.  The pros and cons of diffusion, filters and fixers in Atmospheric General Circulation Models , 2011 .

[67]  Chi-Wang Shu Numerical experiments on the accuracy of ENO and modified ENO schemes , 1990 .

[68]  B. Haurwitz THE MOTION OF ATMOSPHERIC DISTURBANCES ON THE SPHERICAL EARTH , 2019 .

[69]  H. Tufo,et al.  Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core , 2009 .

[70]  Nigel Wood,et al.  Runge-Kutta IMEX schemes for the Horizontally Explicit/Vertically Implicit (HEVI) solution of wave equations , 2013, J. Comput. Phys..

[71]  Feng Xiao,et al.  A note on the general multi-moment constrained flux reconstruction formulation for high order schemes , 2012 .

[72]  Yu Wang,et al.  New generation of multi-scale NWP system (GRAPES): general scientific design , 2008 .

[73]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[74]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[75]  R. K. Scott,et al.  An initial-value problem for testing numerical models of the global shallow-water equations , 2004 .

[76]  William C. Skamarock,et al.  Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique , 1994 .

[77]  Feng Xiao,et al.  Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids , 2014, J. Comput. Phys..

[78]  T. Yabe,et al.  The constrained interpolation profile method for multiphase analysis , 2001 .

[79]  Rupert Klein,et al.  A moist pseudo-incompressible model , 2014 .

[80]  Roni Avissar,et al.  The Ocean-Land-Atmosphere Model (OLAM). Part I: Shallow-Water Tests , 2008 .

[81]  Christiane Jablonowski,et al.  An Intercomparison of 10 Atmospheric Model Dynamical Cores , 2008 .

[82]  Stephen J. Thomas,et al.  The NCAR Spectral Element Climate Dynamical Core: Semi-Implicit Eulerian Formulation , 2005, J. Sci. Comput..

[83]  Feng Xiao,et al.  A Non-oscillatory Multi-Moment Finite Volume Scheme with Boundary Gradient Switching , 2017, J. Sci. Comput..

[84]  J. Hack,et al.  Spectral transform solutions to the shallow water test set , 1995 .

[85]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[86]  Janusz A. Pudykiewicz On numerical solution of the shallow water equations with chemical reactions on icosahedral geodesic grid , 2011, J. Comput. Phys..

[87]  Amik St-Cyr,et al.  A Dynamic hp-Adaptive Discontinuous Galerkin Method for Shallow-Water Flows on the Sphere with Application to a Global Tsunami Simulation , 2012 .

[88]  George H. Bryan,et al.  A Benchmark Simulation for Moist Nonhydrostatic Numerical Models , 2002 .

[89]  Mark A. Taylor,et al.  A compatible and conservative spectral element method on unstructured grids , 2010, J. Comput. Phys..

[90]  Chungang Chen,et al.  An MCV Nonhydrostatic Atmospheric Model with Height-Based Terrain following Coordinate: Tests of Waves over Steep Mountains , 2016 .

[91]  T. Yabe,et al.  Completely conservative and oscillationless semi-Lagrangian schemes for advection transportation , 2001 .

[92]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[93]  Feng Xiao,et al.  Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows , 2006, J. Comput. Phys..

[94]  R. LeVeque Approximate Riemann Solvers , 1992 .

[95]  David L. Williamson,et al.  Integration of the barotropic vorticity equation on a spherical geodesic grid , 1968 .

[96]  Feng Xiao,et al.  CIP/multi-moment finite volume method with arbitrary order of accuracy , 2007 .

[97]  Z. Qingcun,et al.  Nonlinear baroclinic haurwitz waves , 1986 .

[98]  A. Harten High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .

[99]  Feng Xiao,et al.  Shallow water model on cubed-sphere by multi-moment finite volume method , 2008, J. Comput. Phys..

[100]  F. Xiao,et al.  Numerical simulations of free-interface fluids by a multi-integrated moment method , 2005 .