Quadrature rules using an arbitrary fixed order of derivatives
暂无分享,去创建一个
[1] G. Phillips. Interpolation and Approximation by Polynomials , 2003 .
[2] David Elliott,et al. A Unified Approach to Quadrature Rules with Asymptotic Estimates of Their Remainders , 1972 .
[3] A. Stroud,et al. Approximate Calculation of Integrals , 1962 .
[4] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[5] Herbert S. Wilf,et al. Mathematics for the Physical Sciences , 1976 .
[6] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[7] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[8] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[9] Åke Björck,et al. Numerical Methods , 2020, Markov Renewal and Piecewise Deterministic Processes.
[10] William H. Press,et al. Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .
[11] G. Evans. Practical Numerical Integration , 1993 .
[12] T. Chihara,et al. An Introduction to Orthogonal Polynomials , 1979 .