Computing a high-dimensional euclidean embedding from an arbitrary smooth riemannian metric

This article presents a new method to compute a self-intersection free high-dimensional Euclidean embedding (SIFHDE2) for surfaces and volumes equipped with an arbitrary Riemannian metric. It is already known that given a high-dimensional (high-d) embedding, one can easily compute an anisotropic Voronoi diagram by back-mapping it to 3D space. We show here how to solve the inverse problem, i.e., given an input metric, compute a smooth intersection-free high-d embedding of the input such that the pullback metric of the embedding matches the input metric. Our numerical solution mechanism matches the deformation gradient of the 3D → higher-d mapping with the given Riemannian metric. We demonstrate the applicability of our method, by using it to construct anisotropic Restricted Voronoi Diagram (RVD) and anisotropic meshing, that are otherwise extremely difficult to compute. In SIFHDE2-space constructed by our algorithm, difficult 3D anisotropic computations are replaced with simple Euclidean computations, resulting in an isotropic RVD and its dual mesh on this high-d embedding. Results are compared with the state-of-the-art in anisotropic surface and volume meshings using several examples and evaluation metrics.

[1]  Frédéric Alauzet,et al.  High-order sonic boom modeling based on adaptive methods , 2010, J. Comput. Phys..

[2]  Bruno Lévy,et al.  Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration , 2012, IMR.

[3]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[4]  HONG JIAXING,et al.  REALIZATION IN M OF COMPLETE RIEMANNIAN MANIFOLDS WITH NEGATIVE CURVATURE , 2016 .

[5]  Franco Dassi,et al.  Curvature-adapted remeshing of CAD surfaces , 2018, Engineering with Computers.

[6]  Mariette Yvinec,et al.  Anisotropic Delaunay Mesh Generation , 2015, SIAM J. Comput..

[7]  A. Bronstein,et al.  A MULTIGRID APPROACH FOR MULTI-DIMENSIONAL SCALING∗ , 2004 .

[8]  S. SIAMJ. ANISOTROPIC CENTROIDAL VORONOI TESSELLATIONS AND THEIR APPLICATIONS∗ , 2004 .

[9]  C. Dobrzynski,et al.  Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations , 2008, IMR.

[10]  M. Gromov Geometric, algebraic, and analytic descendants of Nash isometric embedding theorems , 2016 .

[11]  LongChen,et al.  OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .

[12]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[13]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[14]  Tom Duff,et al.  Matrix animation and polar decomposition , 1992 .

[15]  Baining Guo,et al.  Anisotropic simplicial meshing using local convex functions , 2014, ACM Trans. Graph..

[16]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[17]  F. Courty,et al.  Continuous metrics and mesh adaptation , 2006 .

[18]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[19]  Mariette Yvinec,et al.  Anisotropic Diagrams: Labelle Shewchuk approach revisited , 2005, CCCG.

[20]  Ho-Lun Cheng,et al.  Dynamic Skin Triangulation , 2001, SODA '01.

[21]  Dong-Ming Yan,et al.  Efficient computation of clipped Voronoi diagram for mesh generation , 2013, Comput. Aided Des..

[22]  E Marchandise,et al.  Metric field construction for anisotropic mesh adaptation with application to blood flow simulations , 2014, International journal for numerical methods in biomedical engineering.

[23]  Steven J. Gortler,et al.  Surface remeshing in arbitrary codimensions , 2006, The Visual Computer.

[24]  Nakul Verma,et al.  Distance Preserving Embeddings for General n-Dimensional Manifolds , 2012, COLT.

[25]  Simona Perotto,et al.  Anisotropic finite element mesh adaptation via higher dimensional embedding , 2015 .

[26]  Tamal K. Dey,et al.  Anisotropic surface meshing , 2006, SODA '06.

[27]  Q. Du,et al.  The optimal centroidal Voronoi tessellations and the gersho's conjecture in the three-dimensional space , 2005 .

[28]  Dong-Ming Yan,et al.  Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.

[29]  Houman BOROUCHAKIyUTT,et al.  Surface Mesh Evaluation , 1997 .

[30]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .

[31]  Jonathan Richard Shewchuk,et al.  Aggressive Tetrahedral Mesh Improvement , 2007, IMR.

[32]  M. Gromov,et al.  Embeddings and immersions in Riemannian geometry , 1970 .

[33]  Jiaxing Hong,et al.  Realization in $\mathbb{R}^3$ of complete Riemannian manifolds with negative curvature , 1993 .

[34]  Rémy Prost,et al.  Variational tetrahedral mesh generation from discrete volume data , 2009, The Visual Computer.

[35]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[36]  James F. O'Brien,et al.  Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..

[37]  J. Nash C 1 Isometric Imbeddings , 1954 .

[38]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[39]  M. Yvinec,et al.  Variational tetrahedral meshing , 2005, SIGGRAPH 2005.

[40]  Jean-Daniel Boissonnat,et al.  Discretized Riemannian Delaunay Triangulations , 2016 .

[41]  Pierre Alliez,et al.  Perturbing Slivers in 3D Delaunay Meshes , 2009, IMR.

[42]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[43]  Long Chen,et al.  Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..

[44]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[45]  Kiyosi Itô Stochastic Differential Equations in a Differentiable Manifold , 1950, Nagoya Mathematical Journal.

[46]  Alexander M. Bronstein,et al.  Multigrid multidimensional scaling , 2006, Numer. Linear Algebra Appl..

[47]  Bruno Lévy,et al.  Particle-based anisotropic surface meshing , 2013, ACM Trans. Graph..

[48]  Bruno Lévy,et al.  Robustness and efficiency of geometric programs: The Predicate Construction Kit (PCK) , 2016, Comput. Aided Des..

[49]  Liang Shuai,et al.  Anisotropic surface meshing with conformal embedding , 2014, Graph. Model..

[50]  Mariette Yvinec,et al.  Anisotropic Delaunay Meshes of Surfaces , 2015, TOGS.

[51]  Kenji Shimada,et al.  Bubble mesh: automated triangular meshing of non-manifold geometry by sphere packing , 1995, SMA '95.

[52]  K. Shimada,et al.  Anisotropic Triangular Meshing of Parametric Surfaces via Close Packing of Ellipsoidal Bubbles , 2007 .

[53]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[54]  Jia-Xing Hong,et al.  Isometric Embedding of Riemannian Manifolds in Euclidean Spaces , 2006 .

[55]  Francis Lazarus,et al.  Flat tori in three-dimensional space and convex integration , 2012, Proceedings of the National Academy of Sciences.

[56]  Wenping Wang,et al.  Sliver-suppressing tetrahedral mesh optimization with gradient-based shape matching energy , 2017, Comput. Aided Geom. Des..

[57]  Franco Dassi,et al.  Curvature-adapted Remeshing of CAD Surfaces☆ , 2014 .

[58]  Michael Garland,et al.  Optimal triangulation and quadric-based surface simplification , 1999, Comput. Geom..

[59]  E Marchandise,et al.  Cardiovascular and lung mesh generation based on centerlines , 2013, International journal for numerical methods in biomedical engineering.

[60]  Olga Sorkine-Hornung,et al.  Frame fields , 2014, ACM Trans. Graph..

[61]  Frédéric Alauzet,et al.  A decade of progress on anisotropic mesh adaptation for computational fluid dynamics , 2016, Comput. Aided Des..

[62]  Ligang Liu,et al.  Revisiting Optimal Delaunay Triangulation for 3D Graded Mesh Generation , 2014, SIAM J. Sci. Comput..

[63]  Rémy Prost,et al.  Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams , 2008, IEEE Transactions on Visualization and Computer Graphics.

[64]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[65]  M. I. Freidlin On the Factorization of Non-Negative Definite Matrices , 1968 .

[66]  Denis Zorin,et al.  Anisotropic quadrangulation , 2010, SPM '10.

[67]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[68]  Mariette Yvinec,et al.  Locally uniform anisotropic meshing , 2008, SCG '08.

[69]  Pierre Alliez,et al.  Optimal voronoi tessellations with hessian-based anisotropy , 2016, ACM Trans. Graph..

[70]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[71]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[72]  Kenji Shimada,et al.  High Quality Anisotropic Tetrahedral Mesh Generation Via Ellipsoidal Bubble Packing , 2000, IMR.