Computing a high-dimensional euclidean embedding from an arbitrary smooth riemannian metric
暂无分享,去创建一个
Bruno Lévy | Wenping Wang | Jing Hua | Xiaohu Guo | Zichun Zhong | B. Lévy | Wenping Wang | X. Guo | Jing Hua | Z. Zhong
[1] Frédéric Alauzet,et al. High-order sonic boom modeling based on adaptive methods , 2010, J. Comput. Phys..
[2] Bruno Lévy,et al. Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration , 2012, IMR.
[3] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[4] HONG JIAXING,et al. REALIZATION IN M OF COMPLETE RIEMANNIAN MANIFOLDS WITH NEGATIVE CURVATURE , 2016 .
[5] Franco Dassi,et al. Curvature-adapted remeshing of CAD surfaces , 2018, Engineering with Computers.
[6] Mariette Yvinec,et al. Anisotropic Delaunay Mesh Generation , 2015, SIAM J. Comput..
[7] A. Bronstein,et al. A MULTIGRID APPROACH FOR MULTI-DIMENSIONAL SCALING∗ , 2004 .
[8] S. SIAMJ.. ANISOTROPIC CENTROIDAL VORONOI TESSELLATIONS AND THEIR APPLICATIONS∗ , 2004 .
[9] C. Dobrzynski,et al. Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations , 2008, IMR.
[10] M. Gromov. Geometric, algebraic, and analytic descendants of Nash isometric embedding theorems , 2016 .
[11] LongChen,et al. OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .
[12] Jovan Popovic,et al. Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..
[13] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[14] Tom Duff,et al. Matrix animation and polar decomposition , 1992 .
[15] Baining Guo,et al. Anisotropic simplicial meshing using local convex functions , 2014, ACM Trans. Graph..
[16] R. B. Simpson. Anisotropic mesh transformations and optimal error control , 1994 .
[17] F. Courty,et al. Continuous metrics and mesh adaptation , 2006 .
[18] Pierre Alliez,et al. Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..
[19] Mariette Yvinec,et al. Anisotropic Diagrams: Labelle Shewchuk approach revisited , 2005, CCCG.
[20] Ho-Lun Cheng,et al. Dynamic Skin Triangulation , 2001, SODA '01.
[21] Dong-Ming Yan,et al. Efficient computation of clipped Voronoi diagram for mesh generation , 2013, Comput. Aided Des..
[22] E Marchandise,et al. Metric field construction for anisotropic mesh adaptation with application to blood flow simulations , 2014, International journal for numerical methods in biomedical engineering.
[23] Steven J. Gortler,et al. Surface remeshing in arbitrary codimensions , 2006, The Visual Computer.
[24] Nakul Verma,et al. Distance Preserving Embeddings for General n-Dimensional Manifolds , 2012, COLT.
[25] Simona Perotto,et al. Anisotropic finite element mesh adaptation via higher dimensional embedding , 2015 .
[26] Tamal K. Dey,et al. Anisotropic surface meshing , 2006, SODA '06.
[27] Q. Du,et al. The optimal centroidal Voronoi tessellations and the gersho's conjecture in the three-dimensional space , 2005 .
[28] Dong-Ming Yan,et al. Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.
[29] Houman BOROUCHAKIyUTT,et al. Surface Mesh Evaluation , 1997 .
[30] P. George,et al. Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .
[31] Jonathan Richard Shewchuk,et al. Aggressive Tetrahedral Mesh Improvement , 2007, IMR.
[32] M. Gromov,et al. Embeddings and immersions in Riemannian geometry , 1970 .
[33] Jiaxing Hong,et al. Realization in $\mathbb{R}^3$ of complete Riemannian manifolds with negative curvature , 1993 .
[34] Rémy Prost,et al. Variational tetrahedral mesh generation from discrete volume data , 2009, The Visual Computer.
[35] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[36] James F. O'Brien,et al. Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..
[37] J. Nash. C 1 Isometric Imbeddings , 1954 .
[38] P. George,et al. Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .
[39] M. Yvinec,et al. Variational tetrahedral meshing , 2005, SIGGRAPH 2005.
[40] Jean-Daniel Boissonnat,et al. Discretized Riemannian Delaunay Triangulations , 2016 .
[41] Pierre Alliez,et al. Perturbing Slivers in 3D Delaunay Meshes , 2009, IMR.
[42] Paul S. Heckbert,et al. A Pliant Method for Anisotropic Mesh Generation , 1996 .
[43] Long Chen,et al. Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..
[44] Marc Alexa,et al. As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.
[45] Kiyosi Itô. Stochastic Differential Equations in a Differentiable Manifold , 1950, Nagoya Mathematical Journal.
[46] Alexander M. Bronstein,et al. Multigrid multidimensional scaling , 2006, Numer. Linear Algebra Appl..
[47] Bruno Lévy,et al. Particle-based anisotropic surface meshing , 2013, ACM Trans. Graph..
[48] Bruno Lévy,et al. Robustness and efficiency of geometric programs: The Predicate Construction Kit (PCK) , 2016, Comput. Aided Des..
[49] Liang Shuai,et al. Anisotropic surface meshing with conformal embedding , 2014, Graph. Model..
[50] Mariette Yvinec,et al. Anisotropic Delaunay Meshes of Surfaces , 2015, TOGS.
[51] Kenji Shimada,et al. Bubble mesh: automated triangular meshing of non-manifold geometry by sphere packing , 1995, SMA '95.
[52] K. Shimada,et al. Anisotropic Triangular Meshing of Parametric Surfaces via Close Packing of Ellipsoidal Bubbles , 2007 .
[53] Chenglei Yang,et al. On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.
[54] Jia-Xing Hong,et al. Isometric Embedding of Riemannian Manifolds in Euclidean Spaces , 2006 .
[55] Francis Lazarus,et al. Flat tori in three-dimensional space and convex integration , 2012, Proceedings of the National Academy of Sciences.
[56] Wenping Wang,et al. Sliver-suppressing tetrahedral mesh optimization with gradient-based shape matching energy , 2017, Comput. Aided Geom. Des..
[57] Franco Dassi,et al. Curvature-adapted Remeshing of CAD Surfaces☆ , 2014 .
[58] Michael Garland,et al. Optimal triangulation and quadric-based surface simplification , 1999, Comput. Geom..
[59] E Marchandise,et al. Cardiovascular and lung mesh generation based on centerlines , 2013, International journal for numerical methods in biomedical engineering.
[60] Olga Sorkine-Hornung,et al. Frame fields , 2014, ACM Trans. Graph..
[61] Frédéric Alauzet,et al. A decade of progress on anisotropic mesh adaptation for computational fluid dynamics , 2016, Comput. Aided Des..
[62] Ligang Liu,et al. Revisiting Optimal Delaunay Triangulation for 3D Graded Mesh Generation , 2014, SIAM J. Sci. Comput..
[63] Rémy Prost,et al. Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams , 2008, IEEE Transactions on Visualization and Computer Graphics.
[64] Pascal Frey,et al. Anisotropic mesh adaptation for CFD computations , 2005 .
[65] M. I. Freidlin. On the Factorization of Non-Negative Definite Matrices , 1968 .
[66] Denis Zorin,et al. Anisotropic quadrangulation , 2010, SPM '10.
[67] Mariette Yvinec,et al. Variational tetrahedral meshing , 2005, ACM Trans. Graph..
[68] Mariette Yvinec,et al. Locally uniform anisotropic meshing , 2008, SCG '08.
[69] Pierre Alliez,et al. Optimal voronoi tessellations with hessian-based anisotropy , 2016, ACM Trans. Graph..
[70] Jorge Nocedal,et al. On the limited memory BFGS method for large scale optimization , 1989, Math. Program..
[71] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[72] Kenji Shimada,et al. High Quality Anisotropic Tetrahedral Mesh Generation Via Ellipsoidal Bubble Packing , 2000, IMR.