The GALAH survey and Gaia DR2: (non-)existence of five sparse high-latitude open clusters

Sparse open clusters can be found at high galactic latitudes where loosely populated clusters are more easily detected against the lower stellar background. Because most star formation takes place in the thin disc, the observed population of clusters far from the Galactic plane is hard to explain. We combined spectral parameters from the GALAH survey with the Gaia DR2 catalogue to study the dynamics and chemistry of five old sparse high-latitude clusters in more detail. We find that four of them (NGC 1252, NGC 6994, NGC 7772, NGC 7826) - originally classified in 1888-are not clusters but are instead chance projections on the sky. Member stars quoted in the literature for these four clusters are unrelated in our multidimensional physical parameter space; the quoted cluster properties in the literature are therefore meaningless. We confirm the existence of visually similar NGC 1901 for which we provide a probabilistic membership analysis. An overdensity in three spatial dimensions proves to be enough to reliably detect sparse clusters, but the whole six-dimensional space must be used to identify members with high confidence, as demonstrated in the case of NGC 1901. (Less)

[1]  H. Monteiro,et al.  Update of membership and mean proper motion of open clusters from UCAC5 catalogue , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  R. Carrera,et al.  A Gaia DR2 view of the open cluster population in the Milky Way , 2018, Astronomy & Astrophysics.

[3]  T. Cantat-Gaudin,et al.  A new method for unveiling open clusters in Gaia , 2018, Astronomy & Astrophysics.

[4]  U. Munari,et al.  The GALAH Survey: Second Data Release , 2018, 1804.06041.

[5]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: evidence of atomic diffusion in M67? , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  S. Martell,et al.  The GALAH survey: chemical tagging of star clusters and new members in the Pleiades , 2017, 1709.00794.

[7]  Sergey E. Koposov,et al.  Gaia 1 and 2. A pair of new Galactic star clusters , 2017, Monthly Notices of the Royal Astronomical Society.

[8]  L. Girardi,et al.  A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE , 2017, 1701.08510.

[9]  V. D’Orazi,et al.  First determination of s -process element abundances in pre-main sequence clusters: Y, Zr, La, and Ce in IC 2391, the Argus association, and IC 2602 , 2016, 1612.06406.

[10]  B. Pichardo,et al.  ON THE SURVIVAL OF HIGH-ALTITUDE OPEN CLUSTERS WITHIN THE MILKY WAY GALAXY TIDES , 2016, 1611.04595.

[11]  Carlos Bacigalupo,et al.  The GALAH survey: observational overview and Gaia DR1 companion , 2016, 1609.02822.

[12]  E. Bica,et al.  New detections of embedded clusters in the Galactic halo , 2016, 1607.00672.

[13]  J. Valenti,et al.  Spectroscopy Made Easy: Evolution , 2016, 1606.06073.

[14]  Jason T. Wright,et al.  THE PUTATIVE OLD, NEARBY CLUSTER LODÉN 1 DOES NOT EXIST , 2016, 1605.05330.

[15]  M. Davies,et al.  Gravitational scattering of stars and clusters and the heating of the Galactic disk , 2016, 1605.02965.

[16]  B. Pichardo,et al.  ON THE ORIGIN OF HIGH-ALTITUDE OPEN CLUSTERS IN THE MILKY WAY , 2016, 1601.02612.

[17]  Jo Bovy,et al.  THE CHEMICAL HOMOGENEITY OF OPEN CLUSTERS , 2015, 1510.06745.

[18]  U. Munari,et al.  The GALAH survey: scientific motivation , 2015, Monthly Notices of the Royal Astronomical Society.

[19]  J. Bovy galpy: A python LIBRARY FOR GALACTIC DYNAMICS , 2014, 1412.3451.

[20]  N. V. Kharchenko,et al.  Global survey of star clusters in the Milky Way - III. 139 new open clusters at high Galactic latitudes , 2014, 1406.6267.

[21]  Mark R. Krumholz,et al.  The big problems in star formation: The star formation rate, stellar clustering, and the initial mass function , 2014, 1402.0867.

[22]  B. Gibson,et al.  A RAVE investigation on Galactic open clusters , 2013, Astronomy & Astrophysics.

[23]  N. V. Kharchenko,et al.  Global survey of star clusters in the Milky Way II. The catalogue of basic parameters , 2013, 1308.5822.

[24]  C. M. Bidin,et al.  NGC 1252: a high altitude, metal poor open cluster remnant , 2013, 1306.1643.

[25]  S. Roser,et al.  Global survey of star clusters in the Milky Way - I. The pipeline and fundamental parameters in the second quadrant , 2012, 1207.4001.

[26]  M. Pinsonneault,et al.  Asteroseismology of old open clusters with Kepler: direct estimate of the integrated red giant branch mass-loss in NGC 6791 and 6819 , 2011, 1109.4376.

[27]  K. Freeman,et al.  High-resolution elemental abundance analysis of the Hyades supercluster , 2011, 1103.2588.

[28]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[29]  Italy.,et al.  ENHANCED PRODUCTION OF BARIUM IN LOW-MASS STARS: EVIDENCE FROM OPEN CLUSTERS , 2009, 0901.2743.

[30]  Thijs van der Hulst,et al.  Cold gas accretion in galaxies , 2008, 0803.0109.

[31]  U. London,et al.  An alternative method to study star cluster disruption , 2008, 0802.3387.

[32]  Jarrod R. Hurley,et al.  The Core Binary Fractions of Star Clusters from Realistic Simulations , 2007, 0704.0290.

[33]  C. M. Bidin,et al.  Observational templates of star cluster disruption. The stellar group NGC 1901 in front of the Large , 2007, astro-ph/0701758.

[34]  S. Randich,et al.  Element abundances in the metal-rich open cluster NGC 6253 , 2007, astro-ph/0701182.

[35]  Amsterdam,et al.  The effect of spiral arm passages on the evolution of stellar clusters , 2007, astro-ph/0701136.

[36]  M. Asplund,et al.  Chemical Homogeneity in Collinder 261 and Implications for Chemical Tagging , 2006, astro-ph/0611832.

[37]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[38]  K. Freeman,et al.  Chemical Homogeneity in the Hyades , 2005, astro-ph/0509241.

[39]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[40]  J. Makino,et al.  Dynamical evolution of star clusters in tidal fields , 2002, astro-ph/0211471.

[41]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[42]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[43]  G. Carraro,et al.  Photometry of dissolving star cluster candidates - The cases of NGC 7036 and NGC 7772 , 2002, astro-ph/0201251.

[44]  M. Odenkirchen,et al.  NGC 6994 { clearly not a physical stellar ensemble ? , 2001, astro-ph/0111601.

[45]  B. Santiago,et al.  Open clusters or their remnants: B and V photometry of NGC 1901 and NGC 1252 , 2001, astro-ph/0106026.

[46]  B. Santiago,et al.  Dissolving star cluster candidates , 2000, astro-ph/0011280.

[47]  Walter Dehnen,et al.  The Distribution of Nearby Stars in Velocity Space Inferred from Hipparcos Data , 1998, astro-ph/9810320.

[48]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[49]  O. Eggen The Stellar Content of Star Stream I , 1996 .

[50]  Oscar Straniero,et al.  The alpha -enhanced Isochrones and Their Impact on the FITS to the Galactic Globular Cluster System , 1993 .

[51]  P. Bouchet,et al.  NOTES ON THE OPEN CLUSTER NGC 1252 WITH THE VARIABLE CARBON STAR TW HOROLOGII AS A PROBABLE MEMBER. , 1983 .

[52]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[53]  W. H. Christie,et al.  Thomas Bolton, 8 Carlton Terrace, St. Martin's Square, Scarborough; , 1888 .

[54]  P. Hennebelle,et al.  Astronomy & Astrophysics manuscript no. , 2001 .

[55]  L. L. Stryker BLUE STRAGGLERS , 1993 .

[56]  submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 11/26/04 EVOLUTION OF THE BINARY FRACTION IN DENSE STELLAR SYSTEMS , 2022 .