Aerodynamic bag breakup of a polymeric droplet

The aerodynamic breakup of a polymeric droplet in the bag breakup regime is investigated experimentally and compared with the result of the Newtonian droplet. To understand the effect of liquid elasticity, the Weber number is kept fixed ($\approx$ 12.5) while the elasticity number is varied in the range of $\sim 10^{-4}-10^{-2}$. Experiments are performed by allowing a liquid droplet to fall in a horizontal, continuously flowing air stream. It is observed that the initial deformation dynamics of a polymeric droplet is similar to the Newtonian droplet. However, in the later stages, the actual fragmentation of liquid mass is resisted by the presence of polymers. Depending upon the liquid elasticity, fragmentation can be completely inhibited in the timescale of experimental observation. We provide a framework to study this problem, identify the stages where the role of liquid elasticity can be neglected and where it must be considered, and finally, establish a criterion that governs the occurrence or the absence of fragmentation in a specified time period.

[1]  V. Radhakrishna,et al.  On interdependence of instabilities and average drop sizes in bag breakup , 2023, Applied Physics Letters.

[2]  N. Chandra,et al.  Shock-induced atomisation of a liquid metal droplet , 2023, Journal of Fluid Mechanics.

[3]  Tianyou Wang,et al.  Numerical simulation of secondary breakup of shear-thinning droplets , 2022, Physics of Fluids.

[4]  N. Chandra,et al.  Depth from defocus technique applied to unsteady shock-drop secondary atomization , 2022, Experiments in Fluids.

[5]  T. Adcock,et al.  Bag film breakup of droplets in uniform airflows , 2022, Journal of Fluid Mechanics.

[6]  S. Basu,et al.  Bubble dynamics and atomization in evaporating polymeric droplets , 2022, Journal of Fluid Mechanics.

[7]  E. Di Maio,et al.  Bubble Rupture and Bursting Velocity of Complex Fluids , 2022, Langmuir : the ACS journal of surfaces and colloids.

[8]  N. Chandra,et al.  Advances in droplet aerobreakup , 2022, The European Physical Journal Special Topics.

[9]  J. Vermant,et al.  Effects of Bulk Elasticity on Sheet Formation and Expansion , 2022, SSRN Electronic Journal.

[10]  T. Anand,et al.  Droplet deformation during secondary breakup: role of liquid properties , 2022, Experiments in Fluids.

[11]  S. Basu,et al.  Shock-induced aerobreakup of a polymeric droplet , 2022, Journal of Fluid Mechanics.

[12]  N. Ashgriz,et al.  Prediction of the droplet size distribution in aerodynamic droplet breakup , 2022, Journal of Fluid Mechanics.

[13]  S. Rajesh,et al.  Transition to the viscoelastic regime in the thinning of polymer solutions. , 2022, Soft matter.

[14]  K. Sahu,et al.  An experimental investigation of droplet morphology in swirl flow , 2022, Journal of Fluid Mechanics.

[15]  S. Basu,et al.  Shock induced aerobreakup of a droplet , 2021, Journal of Fluid Mechanics.

[16]  D. Lohse Fundamental Fluid Dynamics Challenges in Inkjet Printing , 2021 .

[17]  Hui Zhao,et al.  Secondary breakup of shear thickening suspension drop , 2021, Physics of Fluids.

[18]  N. Chandra,et al.  Contact Line Pinning and Depinning Can Modulate the Rod-Climbing Effect. , 2021, Langmuir : the ACS journal of surfaces and colloids.

[19]  A. Saha,et al.  On secondary atomization and blockage of surrogate cough droplets in single- and multilayer face masks , 2021, Science Advances.

[20]  G. Agbaglah Breakup of thin liquid sheets through hole–hole and hole–rim merging , 2021, Journal of Fluid Mechanics.

[21]  Chenlin Zhu,et al.  An experimental investigation on the secondary breakup of carboxymethyl cellulose droplets , 2020 .

[22]  Z. Zuo,et al.  EXPERIMENTAL BREAKUP CHARACTERISTICS OF ROUND LIQUID JETS OF A DILUTE POLYMER SOLUTION INTO QUIESCENT AIR , 2020, Journal of Applied Mechanics and Technical Physics.

[23]  M. Chernetskiy,et al.  Study of the Weber number impact on secondary breakup of droplets of coal water slurries containing petrochemicals , 2019, Fuel.

[24]  K. Sahu,et al.  Deformation and breakup of droplets in an oblique continuous air stream , 2019, International Journal of Multiphase Flow.

[25]  C. Hős,et al.  An experimental study on the jet breakup of Bingham plastic slurries in air , 2019, Experimental Thermal and Fluid Science.

[26]  M. Gavaises,et al.  Improved droplet breakup models for spray applications , 2019, International Journal of Heat and Fluid Flow.

[27]  D. Bonn,et al.  UvA-DARE ( Digital Academic Repository ) What Determines the Drop Size in Sprays ? , 2018 .

[28]  Hui Zhao,et al.  Transition Weber number between surfactant-laden drop bag breakup and shear breakup of secondary atomization , 2018, Fuel.

[29]  L. Bourouiba,et al.  Universal Rim Thickness in Unsteady Sheet Fragmentation. , 2018, Physical review letters.

[30]  Suhas S. Jain,et al.  Secondary breakup of drops at moderate Weber numbers: Effect of Density ratio and Reynolds number , 2018, International Journal of Multiphase Flow.

[31]  T. Theofanous,et al.  The physics of aerobreakup. IV. Strain-thickening liquids , 2017 .

[32]  J. Dinić,et al.  Pinch‐off dynamics and extensional relaxation times of intrinsically semi‐dilute polymer solutions characterized by dripping‐onto‐substrate rheometry , 2017 .

[33]  Sang-Hoon Kim,et al.  Spray characteristics of aluminized-gel fuels sprayed using pressure-swirl atomizer , 2017 .

[34]  S. Zaleski,et al.  Spray formation in a quasiplanar gas-liquid mixing layer at moderate density ratios: A numerical closeup , 2017 .

[35]  E. Villermaux,et al.  The spontaneous puncture of thick liquid films , 2016, Journal of Fluid Mechanics.

[36]  G. McKinley,et al.  Ligament Mediated Fragmentation of Viscoelastic Liquids. , 2016, Physical review letters.

[37]  J. M. Bush,et al.  Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets , 2016, Experiments in Fluids.

[38]  N. Vandenberghe,et al.  Explosive fragmentation of liquid shells , 2016, Journal of Fluid Mechanics.

[39]  L. Bourouiba,et al.  An analytic solution for capillary thinning and breakup of FENE-P fluids , 2015 .

[40]  Hui Zhao,et al.  Influence of rheological properties on air-blast atomization of coal water slurry , 2014 .

[41]  P. Sojka,et al.  Bag breakup of low viscosity drops in the presence of a continuous air jet , 2014, 2204.06036.

[42]  N. Rocha‐Guzmán,et al.  Study of spray drying of the Aloe vera mucilage (Aloe vera barbadensis Miller) as a function of its rheological properties , 2014 .

[43]  Theo G. Theofanous,et al.  The physics of aerobreakup. III. Viscoelastic liquids , 2013 .

[44]  E. Villermaux,et al.  ‘Effervescent’ atomization in two dimensions , 2013, Journal of Fluid Mechanics.

[45]  M. Jalaal,et al.  Fragmentation of falling liquid droplets in bag breakup mode , 2012 .

[46]  Andreas K. Flock,et al.  Experimental statistics of droplet trajectory and air flow during aerodynamic fragmentation of liquid drops , 2012 .

[47]  T. Theofanous,et al.  The physics of aerobreakup. II. Viscous liquids , 2012 .

[48]  E. Villermaux,et al.  Bursting bubble aerosols , 2011, Journal of Fluid Mechanics.

[49]  Haifeng Liu,et al.  Secondary breakup of coal water slurry drops , 2011 .

[50]  T. Theofanous Aerobreakup of Newtonian and Viscoelastic Liquids , 2011 .

[51]  Hui Zhao,et al.  Morphological classification of low viscosity drop bag breakup in a continuous air jet stream , 2010 .

[52]  E. Villermaux,et al.  Single-drop fragmentation determines size distribution of raindrops , 2009 .

[53]  G. J. Li,et al.  On the physics of aerobreakup , 2008 .

[54]  E. Villermaux,et al.  Physics of liquid jets , 2008 .

[55]  Hai‐feng Liu,et al.  A new breakup regime of liquid drops identified in a continuous and uniform air jet flow , 2007 .

[56]  J. Cooper-White,et al.  Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration , 2006 .

[57]  Daniel D. Joseph,et al.  Rayleigh–Taylor instability of viscoelastic drops at high Weber numbers , 2002, Journal of Fluid Mechanics.

[58]  D. Joseph,et al.  Breakup of a liquid drop suddenly exposed to a high-speed airstream , 1999 .

[59]  D. V. Boger,et al.  Atomisation of dilute polymer solutions in agricultural spray nozzles , 1999 .

[60]  G. Faeth,et al.  Temporal properties of secondary drop breakup in the bag breakup regime , 1998 .

[61]  Mikaelian Rayleigh-Taylor instability in finite-thickness fluids with viscosity and surface tension. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  G. Faeth,et al.  Structure and breakup properties of sprays , 1995 .

[63]  C. Arcoumanis,et al.  Breakup of Newtonian and non-Newtonian fluids in air jets , 1994 .

[64]  G. Faeth,et al.  Drop deformation and breakup due to shock wave and steady disturbances , 1994 .

[65]  L. Aitken,et al.  Rayleigh-Taylor instability in elastic liquids , 1993 .

[66]  J. Yvon,et al.  Fragmentation , 1992, Opérations unitaires. Génie de la réaction chimique.

[67]  Gerard M. Faeth,et al.  Near-limit drop deformation and secondary breakup , 1992 .

[68]  M. Pilch,et al.  Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop , 1987 .

[69]  J. Craig Aerodynamic Droplet Breakup. , 1982 .

[70]  J. Matta,et al.  Viscoelastic breakup in a high velocity airstream , 1982 .

[71]  Tianyou Wang,et al.  Transitions of breakup regimes for viscous droplets in airflow , 2023, Fuel.

[72]  S. E. Snyder Spatially Resolved Characteristics and Analytical Modeling of Elastic Non-Newtonian Secondary Breakup , 2015 .

[73]  J. Venzmer,et al.  Droplet-air collision dynamics: evolution of the film thickness. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  D. Guildenbecher,et al.  Secondary atomization , 2009 .

[75]  B. Gelfand Droplet breakup phenomena in flows with velocity lag , 1996 .

[76]  J. Matta,et al.  AERODYNAMIC ATOMIZATION OF POLYMERIC SOLUTIONS , 1983 .

[77]  J. Nicholls,et al.  Aerodynamic shattering of liquid drops. , 1968 .

[78]  J. Wilcox,et al.  The retardation of drop breakup in high‐velocity airstreams by polymeric modifiers , 1961 .

[79]  Manisha B. Padwal,et al.  Gel propellants , 2022, Progress in Energy and Combustion Science.

[80]  D. Bonn,et al.  UvA-DARE (Digital Academic Repository) What determines the drop size in sprays of polymer solutions? , 2022 .